
内容丰富:本书全面覆盖了TDengine的基础知识、运维管理、应用发到技术内幕,为读者提供一站式学习资源。 紧贴前沿领域:书中不仅介绍了TDengine的核心概念和功能,还深探讨了时序数据处理的最新趋势和技术创新,保持了内容的前沿性。 深浅出:本书以通俗易懂的语言解释复杂概念,通过逐步引导的方式,使读者能够轻松理解并掌握TDengine的高级特性。 理论与实践相结合:通过大量的实例演示和实践案例,本书将理论与实际应用紧密结合,帮助读者更好地将知识应用于具体场景。 TDengine官方出品:本书由TDengine官方具有丰富实战经验的行业专家撰写,确保了内容的专业性和权威性,为读者提供了可靠的学习指导。


1.本书通过丰富的案例展示如何造完整的分析价值:收集正确、可靠的数据,合理分析,获得见解,并将见解融决策过程; 2.前华为中国区CIO杨通鹏、EXIN亚太区总经理孙振鹏联合推荐; 3.一线案例分析,助力数字化转型。 在数字化转型如火如荼的当下,企业必须努力造数据驱动型文化。这不只意味着拥有数据分析精英团队--如果缺乏前瞻性分析,即使生成再多的报表,也不是数据驱动组织。 - 理解数据驱动的真正含义 - 学习评估数据质量的各个指标 - 收集和分析可靠的数据 - 用数据讲故事 - 用A/B测试行数据驱动决策 - 造数据驱动型文化

大多数数据挖掘的教材都专注于介绍理论基础,因而往往难以理解和学习。 本书是介绍写给程序员的一本数据挖掘指南,可以帮助读者动手实践进行数据挖掘、集体智慧并构建推荐系统。 本书作者采用在实践中学的方式,提供了Python的代码和案例,详细介绍如何应用数据挖掘技术,开发出实用的推荐系统。 本书英文版在网络上放出样章,得到很多业内知名人士的推荐和好评。 知名技术译者王斌老师译作,翻译质量上乘 数据挖掘一般是指通过算法搜索隐藏于大量的数据之中的信息的过程。众多的数据挖掘教材都专注于介绍理论基础,因而往往难以理解和学习。 本书是专门写给程序员的一本数据挖掘指南,可以帮助读者动手实践,进行数据挖掘、应用集体智慧并构建推荐系统。 全书共8 章,介绍了数据挖掘的基本知识和理论、协

1.本书作者均来自Spark的母公司Databricks。他们将带你始使用Spark,并了解如何利用它适应这个属于大数据和机器学习的新时代。 2.第2版在第1版的基础上做了大量更新,涵盖Spark 3.0的新特性,并着重展示如何利用机器学习算法执行大数据分析。 3.Spark项目创始人Matei Zaharia、Spark PMC成员Reynold Xin力荐。 毋庸置疑,数据已经成为现代化企业的重要资产,大数据分析技术则是企业挖掘数据价值的核心利器。一直以来,Spark就是大数据分析领域的佼佼者,也已经成为一站式大数据分析引擎的事实标准。 * 学习使用Python、Java、Scala的结构化数据API * 理解Spark SQL引擎的原理 * 掌握Spark应用的优化技巧 * 了解如何读写数据源:JSON、Parquet、CSV、Avro、ORC等 * 使用Structured Streaming分析批式数据和流式数据 * 使用Spark和Delta Lake构建湖仓一体的系统 * 使用MLlib发机器学习流水线