•  深度学习基础与实践

    深度学习基础与实践

    本书从调优、并行、向量化、构建管道等深度学习基础知识始,逐步深,通过现实生活中的例子,展现深度网络架构的方法和策略。本书避免了艰深的理论讨论,而是针对实际问题提供了必要的指引。-深理解机器学习和深度学习基本概念-了解从神经网络到深度网络的演化历程-探索主流深度网络架构,包括卷积神经网络和循环神经网络-了解如何将特定的深度网络应用于适合的问题-全面了解通用的对神经网络和特定深度网络架构调优的基础知识-学习针对不同类型数据的向量化技术以及如何在Spark和Hadoop平台上原生地使用DL4J

    77条评论

    (美) 乔希·帕特森Josh Patterson)、(美) 亚当·吉布森Adam Gibson /2019-07-01 /人民邮电出版社有限公司

  •  智能机器人

    智能机器人

    全面反映新一代信息技术对机器人的变革作用,理论系统性强、理论联系实际,通过本书整合各种智能机器人的应用、科研展,通过思维导图、二维码等构建放性学习知识体系。

    64条评论

    陈良 高瑜 孙荣川 主编 /人民邮电出版社有限公司

  •  深度学习精要(基于R语言)

    深度学习精要(基于R语言)

    深度学习是机器学习的一个分支,其基础是一组试图使用模型架构建立高水平抽象模型的算法。本书结合R语言介绍深度学习软件包H2O,帮助读者理解深度学习的概念。本书从在R中设置可获取的重要深度学习包始,着转向建立神经网络、预测和深度预测等模型,所有这些模型都由实际案例的辅助来实现。成功安装了H2O软件包后,你将学习预测算法。随后本书会解释诸如过拟合数据、异常数据以及深度预测模型等概念。zui后,本书会介绍设计调参和优化模型的概念。本书适合那些胸怀大志的数据科学家,他们精通R语言数据科学概念,并希望可以使用R中的包一步探索深度学习范式。读者需要对R语言具备基础的理解,并熟悉统计算法和机器学习技术。通过阅读本书,你将能够:● 建立R包H2O训练深度学习模型;● 理解深度学习模型背后的核心概念;● 使用自动编码器识别

    30条评论

    (美) Joshua F. Wiley 威利 /2017-09-01 /人民邮电出版社

  •  EDA技术与数字系统设计

    EDA技术与数字系统设计

    本书主要阐述EDA技术和数字系统设计方法,按照“编程器件→设计语言→开发软件→系统设计”的顺序,系统地介绍PLD器件、VHDL设计语言、流行的EDA设计软件和数字系统设计方法等内容,力求涵盖数字系统开发设计中所涉及的主要方面,并在内容上进行精心编排,以着眼于综合开发能力的提高。

    6条评论

    邹彦 /2007-04-01 /电子工业出版社

广告