
本书主要讲述非线性系统分析和非线性系统设计的基本理论。


u 深度理论探讨与实际应用并重:本书不仅深探讨了构建和训练ChatGPT模型的核心技术,还充分展示了ChatGPT在实际应用中的潜力。 u 全面而深的探索:本书全面介绍了ChatGPT的运行机制、关键算法、实际应用以及未来发展趋势,为读者提供了一个全面深的视角,帮助读者深刻理解ChatGPT及其背后的技术原理和应用潜力。 u 面向不同层次的读者:无论是零基础的AI初学者,还是从事自然语言处理研究的科研人员,以及在文本工作领域的专业人士,本书都为他们提供了深度的理论洞见和实践参考。


元宇宙 概念为何突然爆火?Facebook、谷歌、微软都在元宇宙中做了什么?元宇宙将为个人生活带来哪些变化?我们如何利用元宇宙发展创新?本书,你所有关于元宇宙的疑问将会一一揭晓。在现实中不可能的事情,在元宇宙时代,是可以想象和实现的,可以用完全不同的视角来探索和解决现在的问题。元宇宙是多重技术叠加的平台,是 虚拟融合技术x数据技术x网络技术x人工智能 的复合体,元宇宙应用将在可以展望的将来扩展到产业的全领域。人们穿戴上可视设备便可登陆元宇宙,实现VR实景看房、线上参与音乐会、云看展云逛博等等。未来,元宇宙将深刻影响到人们的生活方式。

随着 元宇宙 热度持续,人们对与元宇宙相关领域、相关产品的关注度越来越高,而元宇宙工程作为数字能力引现实世界、实体经济的口,将会是实现企业硬科技转型升级的新一代发现工具、效率工具、创新工具,这正是本书所要讨论的主题。 本书不仅涵盖了构建元宇宙的理论基础与方法论等内容,还从多个行业领域着手,分析了元宇宙具体的落地实践方法,为读者提供了一个具有很强实操意义的科学总结。 本书还具体介绍了元宇宙工程的创意和设计、元宇宙的根基 数字孪生技术等内容,这些都对读者一步了解元宇宙,并将元宇宙从概念上真正落地提供了重要的参考和启发。


读者对象:机器学习工程师;数据挖掘从业者;数据科学家;信息安全领域的学生和从业人员。 讨论机器学习中的安全性问题,即讨论各种干扰机器学习系统输出正确结果的攻方法以及对应的防御方法。

读者对象:希望在预测分析和机器学习领域建立扎实基础的机器学习工程师、数据工程师和数据科学家 1)便于学习,所有的理论后都附有基于Python的具体实例; 2)版本新,适用Python3.5以上版本; 3)实例丰富,场景多样,配套代码完备。

1.将推荐系统的思想应用于流程管理 2.充分考虑流程执行的智能化、动态性与柔性 3.充分利用流程管理系统积累的执行日志 4.用切实可行的算法大幅提升工作流管理效率


如果你什么也不懂,那就从这本书开始。


(1)作者就职于某世界100强企业的数据实验室 (2)作者长期从事人工智能、数据科学、分布式系统等领域的研发工作,在人脸识别领域有丰富的实践经验 (3)核心内容涵盖机器学习、深度学习、计算机视觉、人脸识别等方面的原理、技术和算法 (4)不仅能帮助读者零基础门,而且能指导读者完成工程级别的实践,从零实现一个工程级的人脸识别引擎

《给孩子的人工智能课》以生动有趣的方式,向孩子们介绍了人工智能的基本概念、发展历程和应用领域,使他们在轻松愉快的氛围中了解这一前沿技术。不仅能让孩子们了解人工智能的基本知识,还能激发他们对科技创新的兴趣和热情。 《给孩子的人工智能课》不仅是让孩子了解未来科技的门读物,更是激发孩子探索与创新的启蒙之作。通过生动翔实的案例,将复杂深奥的科技概念变得通俗易懂,帮助孩子们更轻松地走人工智能的世界。 复旦大学教授、科学杂志《新发现》荣誉主编 严锋,纽约默西大学数学与计算机科学系终身教授陈志雄 倾情推荐




神经网络已成为从大量原始的,看似无关的数据中提取有用知识的强大技术。 Java语言是用于实现神经网络的zui合适的工具之一,也是现阶段非常流行的编程语言之一,包含多种有助于发的API和包,具有 一次编写,随处运行 的可移植性。本书完整地演示了使用Java发神经网络的过程,既有非常基础的实例也有高级实例。首先,你将学习神经网络的基础知识、感知机及其特征。 然后,你将使用学到的概念来实现自组织映射网络。 此外,你还会了解一些应用,如天气预报、疾病诊断、客户特征分析和光学字符识别(OCR)等。 zui后,你将学习实时优化和自适应神经网络的方法。首先,你将学习神经网络的基础知识和它们的学习过程。 然后我们关注感知机及其特征。 下来,您将使用您学到的概念实现自组织映射。 此外,您将了解一些应用,如天气预报,疾病诊断,客户




1.本书借孙悟空师徒四人取经的经典故事科普人工智能技术和应用,阐述自然语言处理、计算机视觉、音视频处理等人工智能技术和应用,配合丰富的实验内容,通过百度EasyDL平台体验AI技术的奥秘; 2.本书寓教于乐,结合课堂教学和实验,以及家庭亲子实践的方式,学习和体验AI技术的奥妙,适合8~16岁青少年学习AI门的启蒙书; 3.教育界多位知名青少年教育专家评推荐。

美国国家技术奖获得者、奇大学校长、谷歌公司工程总监雷库兹韦尔**力作。这是一部洞悉未来思维模式、全面解析 人工智能 创建原理的颠覆力作。库兹韦尔对于大脑和人工智能的理解,将对我们生活的方方面面、各行各业,以及我们有关未来的设想产生巨大的影响。库兹韦尔通过一系列推理告诉我们,我们有能力创造超越人类智能的非生物智能。 湛庐文化联合权威机构中国人工智能学会特设专家委员会!该专家委员会包括中国工程院院士李德毅、驭势科技(北京)有限公司联合创始人兼CEO吴甘沙、地平线机器人技术创始人余凯、IBM中国研究院院长沈晓卫、国际人工智能大会(IJCAI)常务理事杨强、科大讯飞研究院院长胡郁、中国人工智能学会秘书长王卫宁等专家学者,他们将以自身深厚的专业实力、卓越的洞察力和深远的影响力,对这些优秀图书行深度评。


复杂系统暨鲁棒控制的理论和应用(Theory and Applications of Complex Systems a

《细说机器学习:从理论到实践》是一个详细介绍现代机器学习理论、经典算法与流行框架及编程实现的机器学习门书。 从统计学、线性代数与概率论等机器学习的基础知识讲起,然后介绍机器学习的基本概念,继 而讲解常用算法与编程实现,最后介绍高级知识、框架实践与项目案例,兼顾理论与应用,详 尽易懂。 每个知识配合示例练习,全书共设计200多个编程实例,向读者展示机器学习算法与框架的实际应用。 全书涉及面广,如神经网络、卷积网络、集成学习、迁移学习等当前机器学习热均有所涉及 。 结合作者多年机器学习研究与发经验,采用流行的Python语言实现,讲解细致,娓娓道来, 适合转型想人工智能领域的大学生、发人员、技术人员和研究人员阅读。


本书适合想要深了解人工智能前沿动态、对ChatGPT类产品感兴趣的读者阅读,能够帮助普通读者快速门,为读者的参与、应用提供机遇与创想。

本书主要阐述EDA技术和数字系统设计方法,按照“编程器件→设计语言→开发软件→系统设计”的顺序,系统地介绍PLD器件、VHDL设计语言、流行的EDA设计软件和数字系统设计方法等内容,力求涵盖数字系统开发设计中所涉及的主要方面,并在内容上进行精心编排,以着眼于综合开发能力的提高。

本书系统介绍对抗样本的基本原理,从相关的背景知识始,包含搭建学习对抗样本的软硬件环境、常用工具,带领读者快速上手实践。本书作者在安全领域有多年实践经验,对业界常见的方法做了系统的归纳总结,包含大量案例,深浅出,实践性强。本书所有示例代码在GitHub上可以下载:https://github.com/duoergun0729/adversarial_examples 主要内容包括: 对抗样本相关的深度学习背景知识,如梯度、优化器、反向传递等。 如何搭建学习对抗样本的软硬件环境。 对抗样本领域的一些常见图像处理技巧。 常见的白盒攻算法与黑盒攻算法。 对抗样本在目标检测领域的应用。 对抗样本的常见加固算法。 常见的对抗样本工具以及如何搭建NIPS对抗样本竞赛环境。 如何站在巨人的肩膀上,快速生成自己的对抗样本,行攻防对抗

u 各种大型语言模型及其相关基础方法、实现工具等,从文本单模态、视听觉多模态、具身智能到交互式智能体,几乎都可以完全使用深度神经网络行系统阐述。这充分表明,自2012年AlexNet问世以来,各种基于端到端数据驱动的深度神经网络学习方法,已走了多远,不仅将自然语言处理、计算机视觉、语音处理等领域,行了彻底改变,而且还正在让这些学科之间的边界消融,并迈向统一。 u 本书从深度神经网络的角度切,体系化地介绍了ChatGPT的基本原理与核心算法,既包括了深度神经网络的基础知识与大演化脉络,Transformer兴起的缘由,也涉及ChatGPT等大型语言模型的预训练、微调、安全及价值对齐以及思维提示应用等重内容的介绍。 u 作者对深度卷积神经网络、LSTM、Transformer和强化学习方法行了深细致的剖析,其中对视觉Transformer相关基础大模型和GPT思想之旅的介

1.本书借孙悟空师徒四人取经的经典故事科普人工智能技术和应用,阐述自然语言处理、计算机视觉、音视频处理等人工智能技术和应用,配合丰富的实验内容,通过百度EasyDL平台体验AI技术的奥秘; 2.本书寓教于乐,结合课堂教学和实验,以及家庭亲子实践的方式,学习和体验AI技术的奥妙,适合8~16岁青少年学习AI门的启蒙书; 3.教育界多位知名青少年教育专家评推荐。

全面、深剖析机器学习的算法原理和模型构建等核心技术 结合大量实例和两个实战项目案例展现各种算法的实际应用 详解监督学习、无监督学习和强化学习的理论基础与应用场景 详解模型训练中的风险函数、参数寻优方法,以及欠拟合与过拟合解决方案 深解析机器学习常用经典模型的基本原理及其Python实现 详解数据标准化、异常值检测、缺失值处理和特征筛选等数据预处理技术 详解两个典型项目实战案例,带领读者动手实践,提高实际发水平 内容丰富:详解机器学习的基础知识和相关算法原理并行实践,还对深度学习的基础知识行讲解,帮助读者系统掌握机器学习的完整知识体系。 循序渐:从机器学习的基本概念和环境搭建始讲解,逐步深其算法原理和模型构建等核心技术,最后行项目实战,学习梯度非常平滑。 理论结合实践:不仅深剖析机器学习的常用算

本书详解Spark 3.0 ML机器学习框架行大数据分析与挖掘的方法,配套示例源码、PPT课件、数据集、发环境、思维导图和答疑服务。

MLlib是Apache Spark机器学习库。本书入门简单,实例丰富,详解协同过滤、线性回归、分类、决策树、保序回归、聚类、关联、数据降维、特征提取和转换等MLlib主要算法,用实例说明MLlib大数据机器学习算法的运用。

和谐人机环境是计算机理论和技术的一个重要的发展方向,也是当前计算机研究的一个热点领域。

适读人群: 本书可以作为高等院校人工智能、电子信息工程、物联网工程、数据科学与大数据技术、通信工程等专业高年级本科生以及智能科学与技术、信号与信息处理、网络空间安全、通信与信息系统等学科研究生的参考教材,也可供从事语音处理技术研究与应用的科研及工程技术人员参考。 十余年深耕智能语音处理的研究结晶 人工智能在语音处理领域的应用成果

分身的代感:分身即自我,分身即媒介。本书从影子、镜像、自画像、摄影术到元宇宙时代的数字分身,结合作品和案例,讲述了艺术创作媒介的演变,视角独特。 书中大量理论结合案例,融合哲学、生物学、人类学等诸多学科,对元宇宙艺术的创作者、服务者、研究者和投资者,都极具参考和启发作用,本书可谓元宇宙艺术史的篇之作。 全书用哲学的思维方式,科学的逻辑架构,来解构元宇宙艺术。有别于绝大多数元宇宙相关的书将 元宇宙 物化或概念化,本书将元宇宙放在人类感知与创造的发展脉络中,作为意识形态完善及提升的阶阶段。 清华大学美术学院教授李睦作序推荐。

(1)机器学习等AI技术驱动的智能数据分析是数据分析行业的未来发展方向,所有数据分析师都应该关注。 (2)作者从事数据分析与挖掘10余年,对Python等各种数据分析技术和工具都非常熟悉,在智能数据分析领域也积累了大量的经验。 (3)本书面向零Python基础和零AI基础的读者,精选了*精华的知识,包含大量示例代码,指导读者快速门。


《微控制器的应用(全国高职高专院校规划教材)》由曹金玲主编,本书以AT89S52单片机为对象,重介绍单片机的应用技术。全书共有6章,包含12个训练项目,内容包括单片机基础知识、单片机寻址方式与指令系统、中断与定时、并行输与输出、串行通信、A/D和D/A转换等,每章后配有练习题和讨论题。

1. 人工智能属于当前社会各界关注的热,本书系统地介绍了人工智能的定义、发展历程及其对各个领域的影响,有助于读者从宏观上深刻理解人工智能的本质,把握技术发展趋势。2. 本书为国内原创图书,能够结合我国的实际和政策,更有指导意义。

本书重介绍因求解大规模问题十分有效而风靡机器学习界的交替方向乘子法,该方法可以广泛应用于机器学习的优化求解,尤其是分布式凸优化问题。

适读人群: NLP相关领域的师生; 工作中应用NLP领域技术的人; 算转型NLP的人。 (1)作者涂铭是数据架构师和人工智能技术专家,先后就职于阿里和腾讯,在NLP和聊天机器人方面积累了大量经验。 (2)作者杜振东是国家标准委人工智能技术专家和AIIA(中国人工智能产业发展联盟)技术专家,在会话式AI方面有多年积累,项目经验丰富。 (3)不仅详解了NLP和人机交互核心技术,从技术、算法、实战3个维度讲解聊天机器人原理、实现与工程实践。 (4)前瞻性强,专注于NLP和人机交互的前沿技术,以及会话式AI技术在热门场景中的工程实践。 (5)实战性强,每章都提供实战代码,大部分代码简单修改后便可在实际场景中使用;数据集并非简单构造,而是具有真实性。 (6)对比性强,结合应用场景,对比不同技术的优劣,既能指导读者行技术选型,又

读者对象:本书非常适合知道如何在 Python 中编程并了解深度学习基础知识的读者。本书面向具有传统机器学习实践经验,或希望在实践中探索深度学习世界并将其实现部署到生产中的发人员。 本书是一本深度学习实践指南,聚焦于PyTorch深度学习各场景的动手实现,不涉及模型层面的原理剖析。书中通过大量示例及代码,详细展示如何使用PyTorch构建深度学习模型原型、构建深度学习工作流和将原型用于生产。全书共7章。第1章介绍使用PyTorch行深度学习的方法和PyTorch的基本API;第2章演示如何构建一个简单神经网络;第3章深探讨深度学习工作流和PyTorch生态系统;第4章介绍基于PyTorch构建的CNN;第5章介绍RNN并探讨序列数据处理;第6章详细介绍生成对抗网络(GAN);第7章介绍强化学习;第8章介绍将PyTorch应用于生产的三种不同方法。

读者对象: 1)人工智能相关专业的研究人员;2)信息科学和计算机科学爱好者;3)统计学或相关IT专业学生;4)不具备专业数学知识的人群。 (1)三位作者资历深厚,分别是阿里巴巴的数据架构师和NLP专家、百炼智能的NLP专家(前明略数据的技术合伙人和科学家)、七牛云AI实验室NLP OCR方向负责人; (2)以实战为导向,绕各种复杂数学公式与证明,确保读者零基础门,详细讲解自然语言处理 的各种核心技术、方法论和经典算法; (3)阿里巴巴达摩院高级算法专家、百炼智能CEO、七牛云AI LAB负责人、天善智能创始人联袂推荐。


(1)百度旗下“深度学习技术及应用国家工程实验室”、百度技术学院联合北航人工智能专家共同撰写,行业实践与学术理论兼顾 (2)李德毅院士、百度公司总裁张亚勤博士、百度公司高级副总裁/AI技术平台体系总负责人王海峰、北京航空航天大学计算机学院教授/博士生导师吕卫锋 、百度技术委员会理事长/百度技术学院院长陈尚义联袂推荐