

国内外服务机器人研发展、服务机器人创业团队未来两三年服务机器人市场发展

一直以来,作者刘晋峰就想有一种价格便宜、设计灵活、能培养孩子动手能力和思维训练的机器人制作方法,以普及机器人制作活动。在多年的单片机教学和科普活动辅导中,他发现这其实不难。很多孩子手中废弃的电动玩具就是非常好的机器人制作材料,价格便宜的单片机又为机器人提供了一颗跃动的“芯”。计算机编程和电路设计还能促孩子的学习,充分利用其宝贵的时间。机器人制作完全可以成为一种普及性很高的课外活动,如何引导这项活动成为作者编写《玩机器人学单片机》的初衷。

谷歌 AlphaGO 战胜李世石,标志着机器智能新时代来袭 人工智能火热来袭,未来 5 年,人工智能会怎样改变我们的生活?未来 15 年呢? 人工智能的下一个 BAT 会在什么领域产生? 科技大咖倾情推荐,内容涵盖人工智能前沿研究热与发展趋势 分享许多知名学者专家难得的不同角度与侧面认识追求 产生了对人工智能未来发展的天马行空想象空间与好奇 将机器人、无人车、深度学习、大数据、虚拟现实等智能技术的变革结合起来,将预示一个大时代的到来,即所谓的 超智能时代 。《新智元:机器 人类 = 超智能时代》深分析了人工智能时代的技术和发展、机遇和挑战,带我们提前走超智能时代。

1.以通俗易懂的方式,从数据科学的角度系统的阐释重要且实用的统计学概念,介绍如何将各种统计方法应用于数据科学中; 2.运用清晰的解释和丰富的示例,将实用的统计学术语与数据挖掘实践相结合,适用于数据科学的门初学者; 3.相比于上一版,本书新增了更多Python和R语言示例,读者可以更深的了解如何在数据科学项目中正确运用各种统计方法; 4.通过本书,你将掌握以下知识: 为什么探索性数据分析是启数据科学任务的关键一步 随机抽样如何降低偏差并提高数据集的质量 实验设计原则如何针对问题生成确定性答案 如何使用回归方法估计结果并检测异常 用于预测记录所属类别的主要分类方法 从数据中 学习 的统计机器学习方法 从未标记的数据中提取信息的无监督学习方法

1.机器学习门手册《机器学习精讲》姊妹篇,人工智能和机器学习领域专业人士的多年实践结晶,深浅出讲解机器学习应用和工程实践。 2.系统阐释利用机器学习大规模地解决业务问题,涉及项目准备工作、数据收集、特征工程、监督模型训练、模型评估、模型部署,以及模型服务、监测和维护等全流程 3.从零始讲解,分任务、分步骤的介绍机器学习项目,展示项目完整设计过程。 4.理论实践相结合侧重于讨论多种实际应用场景,帮助读者应用到实际发中。 5.人工智能和机器学习领域专业人士Cassie Kozyrkov、Karolis Urbonas作序推荐。

(1)极验AI 图项目团队倾力之作 (2)资深图神经网络专家多年研究和实践总结,白翔、俞栋等学术界和企业界领军人物强烈推荐 (3)从原理、算法、实现、应用4个维度详细讲解图神经网络,理论与实践相结合 作者亲授 图神经网络 直播课,与图书搭配学习效果更佳! 回放 PPT获取方式: 1.微信关注 华章计算机 (微信号:hzbook_jsj) 2.在后台回复关键词:GNN

《国家智能制造标准体系建设指南(2016年版)》的权威案例解读,工业和信息化部部长作序推荐。




本书系统介绍对抗样本的基本原理,从相关的背景知识始,包含搭建学习对抗样本的软硬件环境、常用工具,带领读者快速上手实践。本书作者在安全领域有多年实践经验,对业界常见的方法做了系统的归纳总结,包含大量案例,深浅出,实践性强。本书所有示例代码在GitHub上可以下载:https://github.com/duoergun0729/adversarial_examples 主要内容包括: 对抗样本相关的深度学习背景知识,如梯度、优化器、反向传递等。 如何搭建学习对抗样本的软硬件环境。 对抗样本领域的一些常见图像处理技巧。 常见的白盒攻算法与黑盒攻算法。 对抗样本在目标检测领域的应用。 对抗样本的常见加固算法。 常见的对抗样本工具以及如何搭建NIPS对抗样本竞赛环境。 如何站在巨人的肩膀上,快速生成自己的对抗样本,行攻防对抗


初学者学习机器学习课程一般都会面临两大障碍。*大障碍是数学基础。机器学习要求有数学基础,书中大量的公式是初学者的噩梦,尤其是对于已经离大学走向工作岗位的爱好者来说,从头始去学习和理解数据分布和模型背后的数学原理需要花费很多的时间和精力,学习周期非常漫长。第二大障碍是编程实践。并不是所有人都擅长编代码,而只有亲手用代码实现机器学习的各种算法,亲眼见到算法解决了实际问题,才能更深理解算法。除非想做高精尖的前沿研究,理论研究和公式推导并非大多数人的专长,如果只是想更合理地应用机器学习来解决实际问题,掌握必需的数学知识就可以理解问题该如何解决,使用Python编程实现机器学习算法也比使用C 或Java等语言容易得多。 本书就是为了让初学者顺利门而设计的。首先,本书只讲述机器学习常用算法的基本原理,并

本书主要讲述非线性系统分析和非线性系统设计的基本理论。

1.热结合。 2017年,国务院发布了《新一代人工智能发展规划》。2022年政府工作报告中提出,促数字经济发展,完善数字经济治理,释放数据要素潜力,更好赋能经济发展、丰富人民生活。2023年4月28日,政治局会议指出 重视通用人工智能发展 ,2023年5月5日,中央财经委会议强调,要把握人工智能等新科技革命浪潮,适应人与自然和谐共生的要求,保持并增强产业体系完备和配套能力强的优势,高效集聚全球创新要素,推产业智能化、绿色化、融合化,建设具有完整性、先性、安全性的现代化产业体系。 2.创新性。 从ChatGPT,到AIGC,再到AGI。目前市场上围绕数字经济、人工智能方面的图书品类较多,但以全球视野展望通用人工智能发展方面的图书品类较少。数字经济时代推动下,人工智能作为关键性的新型技术能力,被视为数字经济发展的助推器和推动力,本书

《探秘机器人王国(第2版》是一部长篇科普小说。故事始于机器人王国的一则爆炸性新闻,即机器人要求和人类平等、与人类平分天下。为了探究那里到底发生了什么,主人公林灵(长衫市的初二学生)作为代表,同全世界各路媒体、学者一起,来到 机器人王国 考察,并前往各个国家的机器人产业了解机器人的真实样貌。全书分为18章,从历史、基本结构、工农林业、空间和海洋探索、国防与安保、医疗、家政服务、文化娱乐、教育等多方面,介绍了机器人发展的现状,为读者展现了一幅多彩的机器人画卷。以往机器人容易给人留下的机械工具、触感冰冷、没有感情、令人恐惧等印象转化为智能助手、幽默温和、感情丰富的新认知。希望通过本书,能够和广大读者分享机器人技术发展的真实现状,认识到真正的 机器人王国 是什么样子的,了解它们在人类生活中


本书重介绍因求解大规模问题十分有效而风靡机器学习界的交替方向乘子法,该方法可以广泛应用于机器学习的优化求解,尤其是分布式凸优化问题。

本书使用大量实战案例,将AIGC和增长相结合



(1)星环科技人工智能平台团队合著,凝结星环科技人工智能和大数据团队丰富的实战经验 (2)从技术视角提供当前人工智能相关技术的深介绍,不仅讲解人工智能知识体系的理论基础,也可以指导基于实战的平台环境行操作。 (3)针对各种类型的机器学习问题,基于星环自研的人工智能平台(Sophon)环境,结合真实案例,依照数据、分析、建模的演历程行系统化阐述并行实战讲解。

深度学习应用所使用的大部分数据是由自然语言处理(NLP)提供的,而TensorFlow是目前比较重要的深度学习框架。面对当今巨量数据流中众多的非结构化数据,本书详细讲解如何将TensorFlow与NLP二者结合以提供有效的工具,以及如何将这些工具应用于具体的NLP任务。 本书首先介绍NLP和TensorFlow的基础知识,之后讲解如何使用Word2vec及其高级扩展,以便通过创建词嵌将词序列转换为深度学习算法可用的向量。本书还介绍如何通过卷积神经网络(CNN)和递归神经网络(RNN)等经典深度学习算法执行句子分类和语言生成等重要的NLP任务。你将学习如何在NLP任务中应用高性能的RNN模型(比如长短期记忆单元),还将认识神经机器翻译,并实现一个神经机器翻译器。 通过阅读本书,你将学到: NLP的核心概念和各种自然语言处理方法 使用TensorFlow函数创建神经网络以完成NLP任务

u 深度理论探讨与实际应用并重:本书不仅深探讨了构建和训练ChatGPT模型的核心技术,还充分展示了ChatGPT在实际应用中的潜力。 u 全面而深的探索:本书全面介绍了ChatGPT的运行机制、关键算法、实际应用以及未来发展趋势,为读者提供了一个全面深的视角,帮助读者深刻理解ChatGPT及其背后的技术原理和应用潜力。 u 面向不同层次的读者:无论是零基础的AI初学者,还是从事自然语言处理研究的科研人员,以及在文本工作领域的专业人士,本书都为他们提供了深度的理论洞见和实践参考。

《机器学习门与实战 MATLAB实践应用》的编写是作者在多年机器学习及工作经验的基础上,对大量的网络资源、论文和相关书籍行总结、整理、分析而来。全书共分为三部分,分别为机器学习概念篇、MATLAB机器学习基础篇、机器学习算法与MATLAB实践篇。

人工智能相关领域面试、笔试、经验心得、算法、考、难、真题解析一应俱全,获取高薪 在这里,有面试笔试常见技巧的提炼与总结; 在这里,有面试笔试高频人工智能领域相关知识的整理与剖析; 在这里,有面试笔试历年人工智能领域相关真题的解答与拓展。


元宇宙 概念为何突然爆火?Facebook、谷歌、微软都在元宇宙中做了什么?元宇宙将为个人生活带来哪些变化?我们如何利用元宇宙发展创新?本书,你所有关于元宇宙的疑问将会一一揭晓。在现实中不可能的事情,在元宇宙时代,是可以想象和实现的,可以用完全不同的视角来探索和解决现在的问题。元宇宙是多重技术叠加的平台,是 虚拟融合技术x数据技术x网络技术x人工智能 的复合体,元宇宙应用将在可以展望的将来扩展到产业的全领域。人们穿戴上可视设备便可登陆元宇宙,实现VR实景看房、线上参与音乐会、云看展云逛博等等。未来,元宇宙将深刻影响到人们的生活方式。

复杂系统暨鲁棒控制的理论和应用(Theory and Applications of Complex Systems a



Python是一门通用型编程语言,也是一门相对容易学习的语言。因此,数据科学家在为中小规模的数据集制作原型、实现可视化和分析数据时,经常选择使用Python。本书填补了机器学习和Web发之间的鸿沟。本书重讲解在Web应用中实现预测分析功能的难,重介绍Python语言及相关框架、工具和库,展示了如何搭建机器学习系统。你将从本书学到机器学习的核心概念,学习如何将数据部署到用Django框架发的Web应用;还将学到如何挖掘Web、文档和服务器端数据以及如何搭建推荐引擎。随后,你将一步探索功能强大的Django框架,学习搭建一个简单、具备现代感的影评情感分析应用,它可是用机器学习算法驱动的!本书是写给正努力成为数据科学家的读者以及新晋的数据科学家的。读者应该具备一些机器学习经验。如果你对发智能(具备预测功能的)Web应用感兴趣,或正在从事相


读者对象:机器学习工程师;数据挖掘从业者;数据科学家;信息安全领域的学生和从业人员。 讨论机器学习中的安全性问题,即讨论各种干扰机器学习系统输出正确结果的攻方法以及对应的防御方法。

通过本书,你将学会如何使用TensorFlow行移动端机器学习应用的发,以及了解如下内容: ● TensorFlow对移动平台支持的起源和思路 ● TensorFlow对硬件加速技术的支持 ● TensorFlow Lite的架构和实现原理 ● TensorFlow在各种移动平台和嵌式平台上的发实例 ● 基于TensorFlow和谷歌云行机器学习的方法 ● 基于TensorFlow的机器学习服务框架 ● 基于TensorFlow的各种源技术和工程实践

一线资深技术专家撰写,凝结其自身多年的实践经验,深浅出阐述深度学习的发展历程、相关概念和工作原理涉及当前流行的两个深度学习工具:Caffe和TensorFlow,并且初步探讨强化学习的基本原理和应用

读者对象:1、希望在多个平台的C 环境下始使用OpenCV的计算机视觉新手;2、计算机视觉工程师;3、从初级到高级的各级学生、教师、研究人员;4、其他对计算机视觉和OpenCV感兴趣的人员 1、鼓励 复制 粘贴 运行 这种学习方式并尝试将数学基础保持在*限度; 2、涵盖计算机视觉热门主题,提供完整的项目代码; 3、新增 为项目找到*OpenCV算法 、 避免OpenCV中的常见陷阱 ; 4、超越基础知识,从更高层次来设计和实现复杂图像识别项目。 5、版本新:OpenCV的API(v4.0.0)

机器学习是人工智能领域中非常重要的一个研究方向,而深度学习作为机器学习的重要组成部分,伴随着近几年数据规模的增长和计算力的提升而备受关注。深度学习框架的快速发展大大降低了算法的门门槛,越来越多的深度学习从业者能够通过这些框架实现算法并应用到生活场景中,让我们的生活更加智能和便捷。 通过阅读本书,你将学到: MXNet、TensorFlow、Pytorch、Caffe等深度学习框架的差异 MXNet框架各主要模块的技术原理和应用实践 MXNet在图像分类、目标检测、图像分割中的应用,以及相关算法的训练、模型测试和实现细节 基于动态图构建网络结构的Gluon口 MXNet专门为计算机视觉任务推出的深度学习库GluonCV 从零始实现深度学习和计算机视觉算法的方法

(1)作者就职于某世界100强企业的数据实验室 (2)作者长期从事人工智能、数据科学、分布式系统等领域的研发工作,在人脸识别领域有丰富的实践经验 (3)核心内容涵盖机器学习、深度学习、计算机视觉、人脸识别等方面的原理、技术和算法 (4)不仅能帮助读者零基础门,而且能指导读者完成工程级别的实践,从零实现一个工程级的人脸识别引擎

和谐人机环境是计算机理论和技术的一个重要的发展方向,也是当前计算机研究的一个热点领域。

读者对象:希望在预测分析和机器学习领域建立扎实基础的机器学习工程师、数据工程师和数据科学家 1)便于学习,所有的理论后都附有基于Python的具体实例; 2)版本新,适用Python3.5以上版本; 3)实例丰富,场景多样,配套代码完备。

本书系统地阐述了过程控制系统的结构、原理、特点、适用场合、系统设计及应用等问题,并在分析稳态和动态数学模型的基础上,探讨了过程工业(石化、化工、轻工、医药等)生产过程中典型单元操作的控制方案,并介绍了典型工业生产过程(合成氨过程、常减压过程、催化裂化过程、乙烯过程、聚合过程、生物发酵过程、制浆造纸过程和冶金过程)的控制。

脑机口研究先驱、巴西世界杯 机械战甲 发明者米格尔 尼科莱利斯扛鼎力作! 外骨骼、脑联网、大脑校园、记忆永生 2015年度关于人类未来*不可错过的 精彩大片 !看脑机口如何激发人类潜能、绘制人类未来新图景! 财讯传媒集团首席战略官段永朝专文推荐!清华大学心理学系主任彭凯平,英特尔中国研究院院长吴甘沙,浙江大学生物医学工程与仪器科学学院教授、求是高等研究院常务副院长郑筱祥,2003年诺贝尔化学奖得主彼得 阿格雷等各界精英联袂推荐! 湛庐文化机器人与人工智能系列。


《华尔街日报》**商业书籍、《科克斯书评》**书籍、围《洛杉矶时报》科技图书奖、加州大学伯克利分校全体教师及新生书。 《连线》杂志联合创始人凯文 凯利、连机发明者丹尼尔 希利斯、Boing Boing网站联席主席科利 多克托罗、《纽约时报书评》《波士顿环球报》《经济学人》《西雅图时报》《卫报》等多家媒体联袂推荐! 代码如何管这个世界呢?通过追溯从艾伦 图灵的一维模型如何发展到约翰 冯 诺依曼的二维实现,《图灵的大教堂》提出了一系列关于当下的三维数字宇宙可能走向何处的预见性看法。 湛庐文化出品。

MLlib是Apache Spark机器学习库。本书入门简单,实例丰富,详解协同过滤、线性回归、分类、决策树、保序回归、聚类、关联、数据降维、特征提取和转换等MLlib主要算法,用实例说明MLlib大数据机器学习算法的运用。


本书主要阐述EDA技术和数字系统设计方法,按照“编程器件→设计语言→开发软件→系统设计”的顺序,系统地介绍PLD器件、VHDL设计语言、流行的EDA设计软件和数字系统设计方法等内容,力求涵盖数字系统开发设计中所涉及的主要方面,并在内容上进行精心编排,以着眼于综合开发能力的提高。