
零基础 :零基础门,手把手教学,1分钟生成会议纪要,3分钟搞定高颜值PPT,复杂数据图表一键生成,面向职场 技术小白 的DeepSeek 多模态AI应用指南。 强价值 :文本AI、图像AI、音频AI、视频AI、AI虚拟人等不同应用工具实践应用,实操演示和详细教学,零门槛,各种职场刚需直抄作业! 重实用 :AI写文案、写代码、做简历、做幻灯片、分析数据、写作公文,面向具体职场巧妙应用,快速提升工作效率。 多场景 :精选60多个典型职场应用场景实践,涵盖30多款主流AI应用,案例丰富、覆盖全面,一书在手,AI应用无忧。 多模态 :文本、图片、视频、音乐、虚拟人 多模态AI应用全面覆盖。

国内外服务机器人研发展、服务机器人创业团队未来两三年服务机器人市场发展



和谐人机环境是计算机理论和技术的一个重要的发展方向,也是当前计算机研究的一个热点领域。

本书融合作者多年从业和教学经验,全面阐述使用Java从非结构化数据中组织和提取有用文本的各种实用方法。 本书重介绍NLP应用中可能遇到的核心NLP任务,每个任务都从问题的描述以及应用领域始,循序渐地行分析并给出解决方案,便于你更好地理解NLP技术,高效地解决实际问题。 全书内容丰富,不仅全面描述和总结了自然语言处理的基础知识,还详细介绍了自然语言处理的多种技术,包括NLP工具、文本分词、文本断句、词性判断、任务识别、文本分类、关系提取和组合应用等。书中结合多个示例行深分析,并采用Java编程语言行处理与结果分析。

如果你什么也不懂,那就从这本书开始。

按照从0到1的顺序,引导读者深理解OpenAI API; 10大核心API,涵盖从自然语言处理到复杂数据分析等多个领域; 12个关键应用场景,帮助读者精准应用OpenAI API; 3个标杆案例,展示OpenAI API的创新应用。

笔者根据多年的学习和工作经验,总结出一条有效的学习路线:先抓主干,后抓枝节。学习一个算法就好比遍历一棵大树上的所有枝节,算法越是复杂其对应的枝叶也就越多。一个算法的学习,笔者将它归结成了5个层次:理解主要思想、掌握算法原理、熟练源模型、完成数学推导和行源码实现,帮助读者分阶段地学习,轻松迈机器学习的大门。

读者对象:机器学习工程师;数据挖掘从业者;数据科学家;信息安全领域的学生和从业人员。 讨论机器学习中的安全性问题,即讨论各种干扰机器学习系统输出正确结果的攻方法以及对应的防御方法。




1.本书借孙悟空师徒四人取经的经典故事科普人工智能技术和应用,阐述自然语言处理、计算机视觉、音视频处理等人工智能技术和应用,配合丰富的实验内容,通过百度EasyDL平台体验AI技术的奥秘; 2.本书寓教于乐,结合课堂教学和实验,以及家庭亲子实践的方式,学习和体验AI技术的奥妙,适合8~16岁青少年学习AI门的启蒙书; 3.教育界多位知名青少年教育专家评推荐。

《机器学习门与实战 MATLAB实践应用》的编写是作者在多年机器学习及工作经验的基础上,对大量的网络资源、论文和相关书籍行总结、整理、分析而来。全书共分为三部分,分别为机器学习概念篇、MATLAB机器学习基础篇、机器学习算法与MATLAB实践篇。

神经网络已成为从大量原始的,看似无关的数据中提取有用知识的强大技术。 Java语言是用于实现神经网络的zui合适的工具之一,也是现阶段非常流行的编程语言之一,包含多种有助于发的API和包,具有 一次编写,随处运行 的可移植性。本书完整地演示了使用Java发神经网络的过程,既有非常基础的实例也有高级实例。首先,你将学习神经网络的基础知识、感知机及其特征。 然后,你将使用学到的概念来实现自组织映射网络。 此外,你还会了解一些应用,如天气预报、疾病诊断、客户特征分析和光学字符识别(OCR)等。 zui后,你将学习实时优化和自适应神经网络的方法。首先,你将学习神经网络的基础知识和它们的学习过程。 然后我们关注感知机及其特征。 下来,您将使用您学到的概念实现自组织映射。 此外,您将了解一些应用,如天气预报,疾病诊断,客户

Python是一门通用型编程语言,也是一门相对容易学习的语言。因此,数据科学家在为中小规模的数据集制作原型、实现可视化和分析数据时,经常选择使用Python。本书填补了机器学习和Web发之间的鸿沟。本书重讲解在Web应用中实现预测分析功能的难,重介绍Python语言及相关框架、工具和库,展示了如何搭建机器学习系统。你将从本书学到机器学习的核心概念,学习如何将数据部署到用Django框架发的Web应用;还将学到如何挖掘Web、文档和服务器端数据以及如何搭建推荐引擎。随后,你将一步探索功能强大的Django框架,学习搭建一个简单、具备现代感的影评情感分析应用,它可是用机器学习算法驱动的!本书是写给正努力成为数据科学家的读者以及新晋的数据科学家的。读者应该具备一些机器学习经验。如果你对发智能(具备预测功能的)Web应用感兴趣,或正在从事相


《给孩子的人工智能课》以生动有趣的方式,向孩子们介绍了人工智能的基本概念、发展历程和应用领域,使他们在轻松愉快的氛围中了解这一前沿技术。不仅能让孩子们了解人工智能的基本知识,还能激发他们对科技创新的兴趣和热情。 《给孩子的人工智能课》不仅是让孩子了解未来科技的门读物,更是激发孩子探索与创新的启蒙之作。通过生动翔实的案例,将复杂深奥的科技概念变得通俗易懂,帮助孩子们更轻松地走人工智能的世界。 复旦大学教授、科学杂志《新发现》荣誉主编 严锋,纽约默西大学数学与计算机科学系终身教授陈志雄 倾情推荐



(1)机器学习等AI技术驱动的智能数据分析是数据分析行业的未来发展方向,所有数据分析师都应该关注。 (2)作者从事数据分析与挖掘10余年,对Python等各种数据分析技术和工具都非常熟悉,在智能数据分析领域也积累了大量的经验。 (3)本书面向零Python基础和零AI基础的读者,精选了*精华的知识,包含大量示例代码,指导读者快速门。

读者对象: 1、人工智能领域的技术工程师,尤其是机器学习和深度学习领域的工程师; 2、高校人工智能专业学生、教师以及研究人员; 3、希望了解人工智能尤其是深度学习的技术工程师和产品经理。 (1)本书由百度官方出品,PaddlePaddle总架构师共同创作。 (2)百度公司CTO王海峰博士作序,张钹院士、李未院士、百度集团副总裁吴甜联袂推荐 (3) 内容全面、由浅深、注重实践 ,结合新近PaddlePaddle技术版本,详细讲解了PaddlePaddle的技术和原理,以及如何从零始快速掌握深度学习。

1.将推荐系统的思想应用于流程管理 2.充分考虑流程执行的智能化、动态性与柔性 3.充分利用流程管理系统积累的执行日志 4.用切实可行的算法大幅提升工作流管理效率

MLlib是Apache Spark机器学习库。本书入门简单,实例丰富,详解协同过滤、线性回归、分类、决策树、保序回归、聚类、关联、数据降维、特征提取和转换等MLlib主要算法,用实例说明MLlib大数据机器学习算法的运用。

1.本书借孙悟空师徒四人取经的经典故事科普人工智能技术和应用,阐述自然语言处理、计算机视觉、音视频处理等人工智能技术和应用,配合丰富的实验内容,通过百度EasyDL平台体验AI技术的奥秘; 2.本书寓教于乐,结合课堂教学和实验,以及家庭亲子实践的方式,学习和体验AI技术的奥妙,适合8~16岁青少年学习AI门的启蒙书; 3.教育界多位知名青少年教育专家评推荐。

u 各种大型语言模型及其相关基础方法、实现工具等,从文本单模态、视听觉多模态、具身智能到交互式智能体,几乎都可以完全使用深度神经网络行系统阐述。这充分表明,自2012年AlexNet问世以来,各种基于端到端数据驱动的深度神经网络学习方法,已走了多远,不仅将自然语言处理、计算机视觉、语音处理等领域,行了彻底改变,而且还正在让这些学科之间的边界消融,并迈向统一。 u 本书从深度神经网络的角度切,体系化地介绍了ChatGPT的基本原理与核心算法,既包括了深度神经网络的基础知识与大演化脉络,Transformer兴起的缘由,也涉及ChatGPT等大型语言模型的预训练、微调、安全及价值对齐以及思维提示应用等重内容的介绍。 u 作者对深度卷积神经网络、LSTM、Transformer和强化学习方法行了深细致的剖析,其中对视觉Transformer相关基础大模型和GPT思想之旅的介

1. 李国杰院士新作,承载了他多年来在计算机科学领域深研究的工作结晶 2. 产学研三重背景,兼具工程科学与人文科学的思维 3. 涵盖了科技自立自强、理解人工智能、做强先计算、人才培养教育等多个方面,内容深度广度兼备,引发读者深思考科技创新的未来。 4. 关注信息科学技术发展,倡导自主创新品牌建设。书中分享了科研中所遇到的挑战,以及克服困难的经验方法,对于年轻科研工作者来说具有很好的启示作用。

1)通俗性 每章的标题就是对该章内容的高度概括,在下来的内容中对其行的解释已尽可能做到了准确、翔实。 2)完整性 本书从终端安全的科学内涵、技术解析、关键要素、实现细节到具体应用案例都行了周详的论述。 3)实用性 本书紧密结合应用实际,从安全需求、科学分析到技术支持、应用实践等各方面行分析和论述。

热话题。元宇宙是社会热话题,如何从概念引申到具体行业的应用,一步加深和深化大众对元宇宙的理解,本书可能从更加具体的维度诠释了这一。 创新性。作者在本书中提出的 元宇宙 ,是对元宇宙概念的扩展和延伸,角度比较新颖,有一定创新性,让读者对元宇宙体系有更深切的认识。 抢占先机。就目前来看,市场上暂无 元宇宙 概念的书。本书如果能在较短时间内出版,就抓住了关于这一话题的先机和制高。

《华尔街日报》**商业书籍、《科克斯书评》**书籍、围《洛杉矶时报》科技图书奖、加州大学伯克利分校全体教师及新生书。 《连线》杂志联合创始人凯文 凯利、连机发明者丹尼尔 希利斯、Boing Boing网站联席主席科利 多克托罗、《纽约时报书评》《波士顿环球报》《经济学人》《西雅图时报》《卫报》等多家媒体联袂推荐! 代码如何管这个世界呢?通过追溯从艾伦 图灵的一维模型如何发展到约翰 冯 诺依曼的二维实现,《图灵的大教堂》提出了一系列关于当下的三维数字宇宙可能走向何处的预见性看法。 湛庐文化出品。

《细说机器学习:从理论到实践》是一个详细介绍现代机器学习理论、经典算法与流行框架及编程实现的机器学习门书。 从统计学、线性代数与概率论等机器学习的基础知识讲起,然后介绍机器学习的基本概念,继 而讲解常用算法与编程实现,最后介绍高级知识、框架实践与项目案例,兼顾理论与应用,详 尽易懂。 每个知识配合示例练习,全书共设计200多个编程实例,向读者展示机器学习算法与框架的实际应用。 全书涉及面广,如神经网络、卷积网络、集成学习、迁移学习等当前机器学习热均有所涉及 。 结合作者多年机器学习研究与发经验,采用流行的Python语言实现,讲解细致,娓娓道来, 适合转型想人工智能领域的大学生、发人员、技术人员和研究人员阅读。

本书主要阐述EDA技术和数字系统设计方法,按照“编程器件→设计语言→开发软件→系统设计”的顺序,系统地介绍PLD器件、VHDL设计语言、流行的EDA设计软件和数字系统设计方法等内容,力求涵盖数字系统开发设计中所涉及的主要方面,并在内容上进行精心编排,以着眼于综合开发能力的提高。


读者对象:1、希望在多个平台的C 环境下始使用OpenCV的计算机视觉新手;2、计算机视觉工程师;3、从初级到高级的各级学生、教师、研究人员;4、其他对计算机视觉和OpenCV感兴趣的人员 1、鼓励 复制 粘贴 运行 这种学习方式并尝试将数学基础保持在*限度; 2、涵盖计算机视觉热门主题,提供完整的项目代码; 3、新增 为项目找到*OpenCV算法 、 避免OpenCV中的常见陷阱 ; 4、超越基础知识,从更高层次来设计和实现复杂图像识别项目。 5、版本新:OpenCV的API(v4.0.0)



一线资深技术专家撰写,凝结其自身多年的实践经验,深浅出阐述深度学习的发展历程、相关概念和工作原理涉及当前流行的两个深度学习工具:Caffe和TensorFlow,并且初步探讨强化学习的基本原理和应用

u 深度理论探讨与实际应用并重:本书不仅深探讨了构建和训练ChatGPT模型的核心技术,还充分展示了ChatGPT在实际应用中的潜力。 u 全面而深的探索:本书全面介绍了ChatGPT的运行机制、关键算法、实际应用以及未来发展趋势,为读者提供了一个全面深的视角,帮助读者深刻理解ChatGPT及其背后的技术原理和应用潜力。 u 面向不同层次的读者:无论是零基础的AI初学者,还是从事自然语言处理研究的科研人员,以及在文本工作领域的专业人士,本书都为他们提供了深度的理论洞见和实践参考。

适读人群: 本书可以作为高等院校人工智能、电子信息工程、物联网工程、数据科学与大数据技术、通信工程等专业高年级本科生以及智能科学与技术、信号与信息处理、网络空间安全、通信与信息系统等学科研究生的参考教材,也可供从事语音处理技术研究与应用的科研及工程技术人员参考。 十余年深耕智能语音处理的研究结晶 人工智能在语音处理领域的应用成果

本书使用大量实战案例,将AIGC和增长相结合


读者对象:本书非常适合知道如何在 Python 中编程并了解深度学习基础知识的读者。本书面向具有传统机器学习实践经验,或希望在实践中探索深度学习世界并将其实现部署到生产中的发人员。 本书是一本深度学习实践指南,聚焦于PyTorch深度学习各场景的动手实现,不涉及模型层面的原理剖析。书中通过大量示例及代码,详细展示如何使用PyTorch构建深度学习模型原型、构建深度学习工作流和将原型用于生产。全书共7章。第1章介绍使用PyTorch行深度学习的方法和PyTorch的基本API;第2章演示如何构建一个简单神经网络;第3章深探讨深度学习工作流和PyTorch生态系统;第4章介绍基于PyTorch构建的CNN;第5章介绍RNN并探讨序列数据处理;第6章详细介绍生成对抗网络(GAN);第7章介绍强化学习;第8章介绍将PyTorch应用于生产的三种不同方法。

读者对象: 1)人工智能相关专业的研究人员;2)信息科学和计算机科学爱好者;3)统计学或相关IT专业学生;4)不具备专业数学知识的人群。 (1)三位作者资历深厚,分别是阿里巴巴的数据架构师和NLP专家、百炼智能的NLP专家(前明略数据的技术合伙人和科学家)、七牛云AI实验室NLP OCR方向负责人; (2)以实战为导向,绕各种复杂数学公式与证明,确保读者零基础门,详细讲解自然语言处理 的各种核心技术、方法论和经典算法; (3)阿里巴巴达摩院高级算法专家、百炼智能CEO、七牛云AI LAB负责人、天善智能创始人联袂推荐。

读者对象:希望在预测分析和机器学习领域建立扎实基础的机器学习工程师、数据工程师和数据科学家 1)便于学习,所有的理论后都附有基于Python的具体实例; 2)版本新,适用Python3.5以上版本; 3)实例丰富,场景多样,配套代码完备。

全面、深剖析机器学习的算法原理和模型构建等核心技术 结合大量实例和两个实战项目案例展现各种算法的实际应用 详解监督学习、无监督学习和强化学习的理论基础与应用场景 详解模型训练中的风险函数、参数寻优方法,以及欠拟合与过拟合解决方案 深解析机器学习常用经典模型的基本原理及其Python实现 详解数据标准化、异常值检测、缺失值处理和特征筛选等数据预处理技术 详解两个典型项目实战案例,带领读者动手实践,提高实际发水平 内容丰富:详解机器学习的基础知识和相关算法原理并行实践,还对深度学习的基础知识行讲解,帮助读者系统掌握机器学习的完整知识体系。 循序渐:从机器学习的基本概念和环境搭建始讲解,逐步深其算法原理和模型构建等核心技术,最后行项目实战,学习梯度非常平滑。 理论结合实践:不仅深剖析机器学习的常用算

《探秘机器人王国(第2版》是一部长篇科普小说。故事始于机器人王国的一则爆炸性新闻,即机器人要求和人类平等、与人类平分天下。为了探究那里到底发生了什么,主人公林灵(长衫市的初二学生)作为代表,同全世界各路媒体、学者一起,来到 机器人王国 考察,并前往各个国家的机器人产业了解机器人的真实样貌。全书分为18章,从历史、基本结构、工农林业、空间和海洋探索、国防与安保、医疗、家政服务、文化娱乐、教育等多方面,介绍了机器人发展的现状,为读者展现了一幅多彩的机器人画卷。以往机器人容易给人留下的机械工具、触感冰冷、没有感情、令人恐惧等印象转化为智能助手、幽默温和、感情丰富的新认知。希望通过本书,能够和广大读者分享机器人技术发展的真实现状,认识到真正的 机器人王国 是什么样子的,了解它们在人类生活中


(1)百度旗下“深度学习技术及应用国家工程实验室”、百度技术学院联合北航人工智能专家共同撰写,行业实践与学术理论兼顾 (2)李德毅院士、百度公司总裁张亚勤博士、百度公司高级副总裁/AI技术平台体系总负责人王海峰、北京航空航天大学计算机学院教授/博士生导师吕卫锋 、百度技术委员会理事长/百度技术学院院长陈尚义联袂推荐