
机器学习是一个非常热门的技术,本书内容涵盖多种机器学习模型,包括流行的机器学习算法,例如K近邻算法、逻辑回归、朴素贝叶斯、K 均值算法、决策树以及人工神经网络。与此同时,还讨论了数据预处理、超参数优化和集成方法等主题。阅读完本书之后,读者将学会构建用于文档分类、图像识别、广告检测等任务的系统,还将学到如何使用scikit-learn类库的API从类别变量、文本和图像中提取特征,如何评估模型的性能,并对如何提升模型的性能建立直觉。除此之外,还将掌握在实践中运用scikit-learn构建高效模型所需的技能,并能够通过实用的策略完成高级任务。

《比较》杂志研究部主管,主要研究方向为产业经济学、数字经济、反垄断和管制经济学。曾在中英文期刊上发表学术论文六十余篇,在报刊杂志上发表文章数百篇。曾获得《金融研究》年度论文奖、优秀论文奖、《经济观察报》专栏奖。著有《区块通识:关于区块的111个问题》。 吕琳媛 电子科技大学教授,主要研究方向为复杂网络信息挖掘领域,包括海量信息导航、挖掘、推荐和预测。国家自然科学基金优秀青年基金获得者、四川省青年人才。阿里巴巴复杂科学研究中心副主任。2018年选《麻省理工科技评论》 35岁以下科技创新35人 。著有《重塑:信息经济的结构》。

Python是一门通用型编程语言,也是一门相对容易学习的语言。因此,数据科学家在为中小规模的数据集制作原型、实现可视化和分析数据时,经常选择使用Python。本书填补了机器学习和Web发之间的鸿沟。本书重讲解在Web应用中实现预测分析功能的难,重介绍Python语言及相关框架、工具和库,展示了如何搭建机器学习系统。你将从本书学到机器学习的核心概念,学习如何将数据部署到用Django框架发的Web应用;还将学到如何挖掘Web、文档和服务器端数据以及如何搭建推荐引擎。随后,你将一步探索功能强大的Django框架,学习搭建一个简单、具备现代感的影评情感分析应用,它可是用机器学习算法驱动的!本书是写给正努力成为数据科学家的读者以及新晋的数据科学家的。读者应该具备一些机器学习经验。如果你对发智能(具备预测功能的)Web应用感兴趣,或正在从事相

本书是工业智能新技术系列中的一本,基于智能硬件发方向的一个产品,是一本可以边做边学的实用指南、智能家居DIY的必选教程。适合对机器人相关技术感兴趣的读者阅读,也适合作为普通高校相关专业的工程创新实训、课程设计、科研竞赛及实验指导教程。

本书深浅出地为读者解答三个问题:为什么是 Z-Wave?什么是Z-Wave?如何实现Z-Wave?本书的第0章 从过去看未来,以宏观的视角去看IT市场过去走过的路,借鉴IT行业的发展,分析科技产业的发展规律,再对比Z-Wave技术目前在欧美市场的发展情况,让读者可以从多个维度去思考物联网产业未来的发展轨迹,从而解答*个问题,余下的6个章节涵盖了比较全面的内容,包括射频基础理论、市场上各种同类型技术的分析比较、Z-Wave技术的体系与机制、各种主要功能的原理与具体实现方式、真实世界的实用案例等,为读者解答第二个、第三个问题。

《物品编码标识》从信息标准化人手,系统介绍了物品编码标识系统的相关知识及其应用。

在过去几年中,自然语言处理技术的受欢迎程度呈现“爆炸式”增长。尽管Google、Facebook、OpenAI等前沿公司继续发布着规模更大的语言模型,但许多发团队仍在摸索着构建与时俱的自然语言处理应用程序。本书将帮助你快速了解自然语言处理的新技术及未来发展趋势。 通过阅读本书,你将学习如何为组织中的实际应用程序构建、训练和部署模型。作者使用强调现代自然语言处理*佳实践的代码和示例来指导你完成整个过程。 本书的主要内容包括: ?使用先的自然语言处理模型(如BERT和GPT-3)来解决命名实体识别、文本分类、语义搜索和阅读理解等自然语言处理任务。 ?发性能可媲美甚至优于箱即用系统的自然语言处理模型。 ?Transformer架构和现代技巧,比如席卷整个自然语言处理世界的迁移学习。 ?自然语言处理的工具和框架,包括spaCy、Hugging Face和fast.ai。 ?使用Python

乐高机器人是乐高公司推出的一款新产品,它包括一套用于搭建物理结构的零件库和一个控制行为动作的大脑。

1.不用任何专业基础就能读懂并制作,即便是中小学生也没问题。 2.具备知识性、趣味性,符合当今素质教育鼓励发学生动手能力的主题。 3.机器人制作是火热的话题,完成制作可以在身边环境(兴趣论坛、朋友圈子、学校中)受到关注,有一定实用价值。 4.实践操作性强:从工具和材料准备、装配方法、设计思路到制作过程都配合图片,行了详细讲解,可以对照操作,来完成自己的制作。 5.所选制作实例也有相应的背景知识,读者不光可以制作出有趣的机器人,也可以从中学到相应的知识,比如电子元件常识、机器人的运动方式、仿生学等。 6.作者在杂志、网络上有一定影响力。 7.有配套套件,既可以借助套件推广图书,也可以考虑图书搭配套件销售。

机器学习正在迅速成为数据驱动型世界的一个bi备模块。许多不同的领域,如机器人、医学、零售和出版等,都需要依赖这门技术。通过阅读 Python机器学习实践指南 ,你将学习如何一步步构建真实的机器学习应用程序。Python机器学习实践指南 以通俗易懂,简洁明了的方式,教你如何使用机器学习来收集、分析并操作大量的数据。通过易于理解的项目,本书讲解如何处理各种类型的数据、如何以及何时应用不同的机器学习技术,包括监督学习和无监督学习。本书中的每个项目都同时提供了教学和实践,你将学习如何使用聚类技术来发现低价的机票,以及如何使用线性回归找到一间便宜的公寓 。Python机器学习实践指南 适合的读者包括了解数据科学的Python程序员、数据科学家、架构师,以及想要构建完整的、基于Python的机器学习系统的人们。通过阅读Python机器学习实践

2022年12月16日, Science 杂志发布了2022年度科学十大突破,AIGC(人工智能生成内容)赫然在列。一时间,AIGC成为当下炙手可热的概念。2022年9月,AI绘画爆火;11月30日,ChatGPT横空出世,正式让全世界看到了AIGC的 强大 。无论是AI绘画的爆火,还是ChatGPT的诞生,都属于AIGC这一概念。谁曾想到,在元宇宙、Web3.0等概念风靡的2022年,AI凭借 创作 强势崛起,这预示着AIGC元年即将启,下一个万亿赛道即将爆发。资料显示,国内大厂百度、腾讯优图、阿里巴巴、快手、字节跳动、网易、商汤、美图等都在AIGC领域有所投;国外科技巨头谷歌、Meta、微软、Stability AI、Jasper、OpenAI等也始布局AIGC。2023年,将是AIGC与Web3.0、元宇宙密切结合并将爆发的一年。作为AIGC的门级科普读物,本书结合生动的比喻和有趣的案例,向所有关注未来科技的从业者、创业者、投资人、政府部门科普了AIG

深度学习是机器学习的一个分支,其基础是一组试图使用模型架构建立高水平抽象模型的算法。本书结合R语言介绍深度学习软件包H2O,帮助读者理解深度学习的概念。本书从在R中设置可获取的重要深度学习包始,着转向建立神经网络、预测和深度预测等模型,所有这些模型都由实际案例的辅助来实现。成功安装了H2O软件包后,你将学习预测算法。随后本书会解释诸如过拟合数据、异常数据以及深度预测模型等概念。zui后,本书会介绍设计调参和优化模型的概念。本书适合那些胸怀大志的数据科学家,他们精通R语言数据科学概念,并希望可以使用R中的包一步探索深度学习范式。读者需要对R语言具备基础的理解,并熟悉统计算法和机器学习技术。通过阅读本书,你将能够:● 建立R包H2O训练深度学习模型;● 理解深度学习模型背后的核心概念;● 使用自动编码器识别



今天的AI一定不会重蹈当年的覆辙吗?中国的AI产业真实发展到了什么地步?哪些AI技术*有前途?AI已经被证明可以在哪些领域改变我们的生活?哪些技术征兆,可以让我们窥视十年后的科技未来?在这个AI复兴的时代,还有哪些其他令人兴奋的科技话题?《未来学徒 读懂人工智能飞驰时代》将人工智能的技术语言翻译成大众语言,用灵活易懂的文字解读人工智能的技术核心,通过正在发生的案例摸清人工智能的发展脉络,力求对人工智能的解析让文科生也能读懂。《未来学徒 读懂人工智能飞驰时代》内容主要聚焦于2014~2018年,这是人工智能在当今时代再次复兴的关键五年,作者将其称为 人工智能飞驰时代 ,也是大众口中的 人工智能风口五年 。希望站在较为冷静的当下对火热过往的回望,能带给读者以理性的启迪。《未来学徒 读懂人工智能飞驰时代》的作者为2017


和谐人机环境是计算机理论和技术的一个重要的发展方向,也是当前计算机研究的一个热点领域。

本书从调优、并行、向量化、构建管道等深度学习基础知识始,逐步深,通过现实生活中的例子,展现深度网络架构的方法和策略。本书避免了艰深的理论讨论,而是针对实际问题提供了必要的指引。-深理解机器学习和深度学习基本概念-了解从神经网络到深度网络的演化历程-探索主流深度网络架构,包括卷积神经网络和循环神经网络-了解如何将特定的深度网络应用于适合的问题-全面了解通用的对神经网络和特定深度网络架构调优的基础知识-学习针对不同类型数据的向量化技术以及如何在Spark和Hadoop平台上原生地使用DL4J

内容浅显易懂,教会初学者怎样一步一步的用matlab 仿真出自己想要的机器人。

读者对象:1、希望在多个平台的C 环境下始使用OpenCV的计算机视觉新手;2、计算机视觉工程师;3、从初级到高级的各级学生、教师、研究人员;4、其他对计算机视觉和OpenCV感兴趣的人员 1、鼓励 复制 粘贴 运行 这种学习方式并尝试将数学基础保持在*限度; 2、涵盖计算机视觉热门主题,提供完整的项目代码; 3、新增 为项目找到*OpenCV算法 、 避免OpenCV中的常见陷阱 ; 4、超越基础知识,从更高层次来设计和实现复杂图像识别项目。 5、版本新:OpenCV的API(v4.0.0)

(1)机器学习等AI技术驱动的智能数据分析是数据分析行业的未来发展方向,所有数据分析师都应该关注。 (2)作者从事数据分析与挖掘10余年,对Python等各种数据分析技术和工具都非常熟悉,在智能数据分析领域也积累了大量的经验。 (3)本书面向零Python基础和零AI基础的读者,精选了*精华的知识,包含大量示例代码,指导读者快速门。


谷歌机器学习发专家、华为深度学习团队系统工程师、华为深度学习云服务的技术负责人联合编写 中国科学院计算技术研究所副研究员/中国大数据技术大会(BDTC)发起人查礼、 长江学者 特聘教授/浙江大学计算机学院院长陈刚作序 才云科技创始人兼CEO张鑫、Google Brain资深工程师周玥枫、华为人工智能领域主任工程师夏命榛、云账户联合创始人兼CTO邹永强、博拉科技创始人兼CEO周公爽、微软亚洲研究院助理研究员王锦鹏、 知衣科技联合创始人兼CEO 郑泽宇联合 不仅介绍如何使用TensorFlow,还剖析了系统设计原理


本书主要讲述非线性系统分析和非线性系统设计的基本理论。

《机器学习门与实战 MATLAB实践应用》的编写是作者在多年机器学习及工作经验的基础上,对大量的网络资源、论文和相关书籍行总结、整理、分析而来。全书共分为三部分,分别为机器学习概念篇、MATLAB机器学习基础篇、机器学习算法与MATLAB实践篇。


人工智能相关领域面试、笔试、经验心得、算法、考、难、真题解析一应俱全,获取高薪 在这里,有面试笔试常见技巧的提炼与总结; 在这里,有面试笔试高频人工智能领域相关知识的整理与剖析; 在这里,有面试笔试历年人工智能领域相关真题的解答与拓展。

1.内容实用,案例为主:从实用的角度出发,对工业机器人与PLC 控制系统的综合应用、触摸屏与机器人的联合应用、机器人与视觉系统的综合应用,特别是机器人视觉追踪功能的实际应用做了详细的说明,提供了视觉追踪的实用机器人程序和案例。2.侧重机器人高级应用:对机器人的特殊功能、快速编程指令、状态变量、参数功能及软件应用等方面也做了深浅出的介绍,提供了大量的程序指令解说案例。



全面梳理无人驾驶技术之作! 适合对无人驾驶技术感兴趣的在校学生、工业从业者,以及相关人士阅读。 无人驾驶技术概览 无人驾驶定位导航、感知、决策与控制等算法 深度学习、强化学习、计算机视觉在无人驾驶中的应用 无人驾驶安全等多个主要技术

比史蒂夫 乔布斯、埃隆 马斯克更偏执的 科技狂人 ,现实版 弗兰肯斯坦 ,美国知名生物制药公司联合治疗公司创始人兼CEO 玛蒂娜 罗斯布拉特缔造不死未来的世纪争议之作! 超越人类身体的物理界限,实现人类思维、意识永生不死!《虚拟人》通过思维文件、思维软件、思维克隆人及思维克隆技术等核心概念,向我们展现了一幅人类未来思维永生的大图景! 驭势科技(北京)有限公司联合创始人兼CEO吴甘沙,Ehang亿航创始人兼CEO胡华智,清华大学心理学系主任、加州大学伯克利分校心理学系终身教授彭凯平,中国当代知名科幻作家、畅销书《三体》作者刘慈欣,中国科学院国家天文台研究员、中国科学院大学教授、 第十一届文津奖 获奖图书《星际穿越》译者苟利军,奇大学校长、谷歌工程总监、畅销书《人工智能的未来》作者雷 库兹韦尔,人造生

多主体的研究与应用是近年来备受关注的热点领 域,多主体强化学习理论与方法、多主体协作策略的 研究是该领域重要研究方向,其理论和应用价值极为 广泛,备受广大从事计算机应用、人工智能、自动控 制、以及经济管理等领域研究者的关注。

虚拟化领域系统性教材,涵盖虚拟化历史、通用虚拟化、ARM虚拟化、鲲鹏虚拟化、新一代虚拟化原理和应用实战介绍。加速虚拟化技术落地,助力国产云计算产业发展。

ROS工程师经常面临使用机器人操作系统(ROS)基础设施并将物理机器人连到机器人仿真系统的挑战。通过本书,读者将学习如何在虚拟环境中对机器人行仿真并在等效的实际场景中实现所需的行为。 本书首先介绍GoPiGo3及其配备的传感器和执行器。然后,通过从零始创建3D模型并使用Gazebo在ROS中运行仿真来使用GoPiGo3的数字孪生模型。下来展示如何使用GoPiGo3构建和运行一个了解周围环境的自主移动机器人,探索机器人如何学习尚未在代码中编程但通过观察其环境而获得的任务。本书还涵盖诸如深度学习和强化学习之类的主题。 在本书的*后,读者将熟悉在机器人技术中构建专用应用程序的基础知识,并具备从零发高度智能自主机器人的能力。 本书涵盖的主要内容: ?发有环境感知能力的机器人。 ?机器人在物理环境中的反应。 ?将期望的行为分解为一系列机器人行



初学者学习机器学习课程一般都会面临两大障碍。*大障碍是数学基础。机器学习要求有数学基础,书中大量的公式是初学者的噩梦,尤其是对于已经离大学走向工作岗位的爱好者来说,从头始去学习和理解数据分布和模型背后的数学原理需要花费很多的时间和精力,学习周期非常漫长。第二大障碍是编程实践。并不是所有人都擅长编代码,而只有亲手用代码实现机器学习的各种算法,亲眼见到算法解决了实际问题,才能更深理解算法。除非想做高精尖的前沿研究,理论研究和公式推导并非大多数人的专长,如果只是想更合理地应用机器学习来解决实际问题,掌握必需的数学知识就可以理解问题该如何解决,使用Python编程实现机器学习算法也比使用C 或Java等语言容易得多。 本书就是为了让初学者顺利门而设计的。首先,本书只讲述机器学习常用算法的基本原理,并

深度学习是机器学习中的一个流行子集,能够帮助用户更快速地构建复杂模型,并提供更准确的预测。《深度学习案例精粹》将带领读者深度学习的世界,通过实际操作示例来加深理解。 1.《深度学习案例精粹》语言简练,通过问题简述、方法概括及代码,让读者可以尽快理解并上手深度学习的算法。 2.《深度学习案例精粹》给出的代码非常详细,可以直运行,可以为急于将深度学习应用于实际项目的工程师提供有力帮助,读者可至异步社区下载源代码及彩图文件。 3.《深度学习案例精粹》涵盖了大多数的主流深度学习任务,包括图像领域的图像识别、目标检测任务,自然语言处理中的词嵌、情感分析任务,以及无监督学习任务等。还介绍了几个深度学习的经典模型,当下深度学习的大多数模型都是在这些基础模型上的改与组合,不同领域的从业人员或多或少都能

一线资深技术专家撰写,凝结其自身多年的实践经验,深浅出阐述深度学习的发展历程、相关概念和工作原理涉及当前流行的两个深度学习工具:Caffe和TensorFlow,并且初步探讨强化学习的基本原理和应用

今天的青少年*需要教授的能力是什么?不是应付各种考试的应试能力,而是他在一生中*需要运用到的:从小到大形成的创新思维与实践能力。教育不是为社会机器塑造一个合适的螺丝钉,而是倾听孩子的声音,帮助他成为自己,帮助他在未来生活中,找到自己想要的幸福。创客教育对青少年的培养着力于提高学生解决未知问题的能力,没有标准答案,所有问题都需要自己去探索、讨论、总结、升华,让学生真正参与到创新与实践的过程,并在此过程中获得自我提升与历练,找到未来的方向。本书的创客教学模式融合了STEAM(科学、技术、工程、艺术、数学)教学理论,通过创意电子设计的教学指导,让青少年的创造力、学习力、执行力、组织力、表达力为主体的五维能力得到综合提升。本书采用项目型研究课题的教学模式,通过完成逐步进阶的项目课题,让不同认知



1.内容全面 俯瞰全领域,网罗人工智能发基础理论和技术; 2.图文并茂 334张图示帮助理解,以图配文,知识清晰直观; 3.专业实用 详略得当,辅以公式和代码,为深研究基础。 知识涵盖: 机器学习/深度学习/强化学习/图像和语音的模式识别/自然语言处理/分布式计算

对如何快速把握大数据与人工智能的精髓、避免陷过多的数学细节推导的问题,以及人工智能算法和大数据平台技术的结合问题,本书作者做出了不懈探索。 1.选材上,不仅分别单独讲授人工智能和大数据,还突出两者相结合的内容。 2.内容上,突出浅显易懂,繁杂的数学推导适当做减法,宏观的介绍和实战技能适当做加法。 3.结构上,由浅深,由宏观到比微观,由基础知识到新技术,由理论到实践。 本书主要突出优如下: 1.知识覆盖全。本书共七章,对大数据与人工智能领域的常用基础技术、算法、模型均有介绍,保障读者知识体系的完整性。 2.知识覆盖新。本书紧跟本领域*研究成果。尤其重介绍了深度学习基础知识及其应用。深度学习是当前人工智能领域的潮流和趋势。另外,本书新版所增加的强化学习是机器学习新兴起的一个类别,在许多领域都具有重要



1.本书引用国内外大量理论研究和实践经验,内容翔实。 2.本书作者有数百家企业的服务经验,对于数字经济的背景、发展及相关框架有着非常清晰的认知。 3.本书从少见的经济学视角出发,而非常见的产业视角,为读者提供了不同维度的数字经济概念。 4.本书语言通俗易通,可以面向各类读者,无论是初学者还是研究者。


神经网络已成为从大量原始的,看似无关的数据中提取有用知识的强大技术。 Java语言是用于实现神经网络的zui合适的工具之一,也是现阶段非常流行的编程语言之一,包含多种有助于发的API和包,具有 一次编写,随处运行 的可移植性。本书完整地演示了使用Java发神经网络的过程,既有非常基础的实例也有高级实例。首先,你将学习神经网络的基础知识、感知机及其特征。 然后,你将使用学到的概念来实现自组织映射网络。 此外,你还会了解一些应用,如天气预报、疾病诊断、客户特征分析和光学字符识别(OCR)等。 zui后,你将学习实时优化和自适应神经网络的方法。首先,你将学习神经网络的基础知识和它们的学习过程。 然后我们关注感知机及其特征。 下来,您将使用您学到的概念实现自组织映射。 此外,您将了解一些应用,如天气预报,疾病诊断,客户

本书主要阐述EDA技术和数字系统设计方法,按照“编程器件→设计语言→开发软件→系统设计”的顺序,系统地介绍PLD器件、VHDL设计语言、流行的EDA设计软件和数字系统设计方法等内容,力求涵盖数字系统开发设计中所涉及的主要方面,并在内容上进行精心编排,以着眼于综合开发能力的提高。

全面反映新一代信息技术对机器人的变革作用,理论系统性强、理论联系实际,通过本书整合各种智能机器人的应用、科研展,通过思维导图、二维码等构建放性学习知识体系。


1.机器学习门手册《机器学习精讲》姊妹篇,人工智能和机器学习领域专业人士的多年实践结晶,深浅出讲解机器学习应用和工程实践。 2.系统阐释利用机器学习大规模地解决业务问题,涉及项目准备工作、数据收集、特征工程、监督模型训练、模型评估、模型部署,以及模型服务、监测和维护等全流程 3.从零始讲解,分任务、分步骤的介绍机器学习项目,展示项目完整设计过程。 4.理论实践相结合侧重于讨论多种实际应用场景,帮助读者应用到实际发中。 5.人工智能和机器学习领域专业人士Cassie Kozyrkov、Karolis Urbonas作序推荐。

周金平编著的《生产系统仿真——PlantSimulation应用教程》的一个显著特是没有长篇的理论介绍,而是将理论分散到建模过程中讲述,是生产系统各领域的综合应用;应用工业工程的方法来提升生产线产出率,行企业内部物流配送优化、车间布置优化、流水线平衡、生产计划与排程优化、人机作业分析和仓储仿真优化等经典工业工程问题的讲述与建模。同时,为使读者更好地掌握PlantSimulation,本书建立的仿真模型除第1章外,所有模型均采用了参数化设计的思路,只需简单的修改和扩充,就可以在本模型基础上发面向本科教学、研究生教学的仿真实验平台,也可以面向科研课题和企业实际应用行快速扩充应用。

本书是一部探讨和讲述将目前仅局限于计箅机软件设计领域的面向对象(OO)的理论及方法.如何在当代工业控制系统的设计中进行全面、彻底推广的专著。

一本书讲透ChatGPT的前世、今生与未来,实现从AI小白到高手的化。 重磅专家力荐:著名经济学家朱嘉明作序,北京师范大学新闻传播学院学术委员会主任喻国明,畅销书《暗知识》作者、师从人工智能鼻祖伯纳德 威德罗的王维嘉博士,等倾情推荐。 聚焦前沿热:揭秘以ChatGPT为代表的大语言模型爆火背后有哪些原因?有何时代价值与意义? 描绘应用蓝图:大语言模型给哪些产业带来了福音?相关技术究竟能派上什么用场? 远瞻行业风险:机遇来临之际还将迎来哪些挑战?我们该如何应对?

凡是关心FPGA和集成电路及大数据处理技术的朋友,都可以通过阅读或浏览本书收获丰富的*的FPGA相关知识。

1.不用任何专业基础就能读懂并制作,即便是中小学生也没问题。 2.具备知识性、趣味性,符合当今素质教育鼓励发学生动手能力的主题。 3.机器人制作是火热的话题,完成制作可以在身边环境(兴趣论坛、朋友圈子、学校中)受到关注,有一定实用价值。 4.实践操作性强:从工具和材料准备、装配方法、设计思路到制作过程都配合图片,行了详细讲解,可以对照操作,来完成自己的制作。 5.所选制作实例也有相应的背景知识,读者不光可以制作出有趣的机器人,也可以从中学到相应的知识,比如电子元件常识、机器人的运动方式、仿生学等。 6.作者在杂志、网络上有一定影响力。 7.有配套套件,既可以借助套件推广图书,也可以考虑图书搭配套件销售。