
1)DeepSeek多模态大模型正备受瞩目,而其背后的高性能注意力机制与多模态融合技术更是成为了深度学习研究领域的热。 (2)《DeepSeek大模型高性能核心技术与多模态融合发》致力于成为读者全面掌握DeepSeek核心技术的宝典,通过深浅出的原理讲解与实例分析,引导读者系统学习DeepSeek的核心原理、架构及应用发方法。 (3)《DeepSeek大模型高性能核心技术与多模态融合发》深剖析DeepSeek的核心技术多头潜在注意力MLA与混合专家模型MoE,详细阐述它们的工作原理与技术优势。 (4)《DeepSeek大模型高性能核心技术与多模态融合发》详细探讨DeepSeek中的多模态融合方法,结合丰富的应用实例,为读者提供全面的理论与实践指导,助力读者深理解高性能大模型的运行机制。 (5)实战项目涵盖情感分类、图像识别、语音识别、文本生成、图像生成、图文问答、视频分类、智

基于GPU加速的计算机视觉编程:使用OpenCV和CUDA实时处理复杂图像数据
本书是OpenCV发人员的指南,手把手教你使用OpenCV和CUDA实现GPU加速的计算机视觉项目发,帮你快速掌握利用GPU实时处理复杂图像数据的高效技术。 全书共11章,第1章介绍CUDA架构及应用;第2章介绍如何使用CUDA为GPU编写程序;第3章介绍如何从CUDA程序中调用线程,以及多个线程如何相互通信;第4章介绍CUDA streams和CUDA events等高级概念;第5章介绍在所有操作系统中安装支持CUDA的OpenCV库;第6章讲解如何使用OpenCV编写基本的计算机视觉操作,如像素级的图像操作、过滤和形态学操作;第7章介绍使用OpenCV和CUDA加速一些实际计算机视觉应用程序的步骤;第8章介绍如何在Jetson Tx1嵌式平台上安装OpenCV;第9章介绍如何在Jetson TX1上部署计算机视觉应用程序 ;第10章介绍PyCUDA;第11章讲解如何使用PyCUDA编写程序。





本书是一本全面介绍机器学习方法特别是算法的新书,适合初学者和有一定基础的读者。

本书为普通高等教育“十一五”***规划教材。

本书从理论和实际工程应用出发,介绍了集散控制系统的基本原理及其在工业生产过程中的具体应用实例。

1.机器学习门手册《机器学习精讲》姊妹篇,人工智能和机器学习领域专业人士的多年实践结晶,深浅出讲解机器学习应用和工程实践。 2.系统阐释利用机器学习大规模地解决业务问题,涉及项目准备工作、数据收集、特征工程、监督模型训练、模型评估、模型部署,以及模型服务、监测和维护等全流程 3.从零始讲解,分任务、分步骤的介绍机器学习项目,展示项目完整设计过程。 4.理论实践相结合侧重于讨论多种实际应用场景,帮助读者应用到实际发中。 5.人工智能和机器学习领域专业人士Cassie Kozyrkov、Karolis Urbonas作序推荐。






本书融合作者多年从业和教学经验,全面阐述使用Java从非结构化数据中组织和提取有用文本的各种实用方法。 本书重介绍NLP应用中可能遇到的核心NLP任务,每个任务都从问题的描述以及应用领域始,循序渐地行分析并给出解决方案,便于你更好地理解NLP技术,高效地解决实际问题。 全书内容丰富,不仅全面描述和总结了自然语言处理的基础知识,还详细介绍了自然语言处理的多种技术,包括NLP工具、文本分词、文本断句、词性判断、任务识别、文本分类、关系提取和组合应用等。书中结合多个示例行深分析,并采用Java编程语言行处理与结果分析。

本书通过严谨简明的预备知识介绍,首先帮助读者掌握有关大模型架构、分布式训练等理论知识;然后围绕造首先行业智能助手这一有重大价值的实际问题,向读者展示如何将该问题分解为一系列大模型技术,并展示完整的技术实施和优化过程。 本书侧重于行业实践。同时对涉及的相关理论、框架原理行一定深度的讲解。这样既降低了门难度,又提升了实践的高度。

DeepSeek助力图形图像处理AI绘图、修复合成、视频生成、Photoshop协同(全彩微课版)
全彩印刷,案例丰富,配72个动手练+17个实战演练+62节同步学习视频+24节AIGC拓展学习视频。


初学者学习机器学习课程一般都会面临两大障碍。*大障碍是数学基础。机器学习要求有数学基础,书中大量的公式是初学者的噩梦,尤其是对于已经离大学走向工作岗位的爱好者来说,从头始去学习和理解数据分布和模型背后的数学原理需要花费很多的时间和精力,学习周期非常漫长。第二大障碍是编程实践。并不是所有人都擅长编代码,而只有亲手用代码实现机器学习的各种算法,亲眼见到算法解决了实际问题,才能更深理解算法。除非想做高精尖的前沿研究,理论研究和公式推导并非大多数人的专长,如果只是想更合理地应用机器学习来解决实际问题,掌握必需的数学知识就可以理解问题该如何解决,使用Python编程实现机器学习算法也比使用C 或Java等语言容易得多。 本书就是为了让初学者顺利门而设计的。首先,本书只讲述机器学习常用算法的基本原理,并

读者对象: 希望了解TensorFlow结构和新特性的数据科学家、机器学习的发人员、深度学习的研究人员和具有统计知识的发者。要充分利用这本书,需要你掌握Python编程语言方面的知识。 TensorFlow是流行的、使用广泛的机器学习框架,它使得每个人都能轻松发机器学习解决方案。使用TensorFlow 2.0,你将研究一个改后的框架结构,它提供了大量的新特性,以提升发者的工作效率和便于发者使用。 本书通过聚焦于发基于神经网络的解决方案来介绍机器学习。本书从构建深度学习解决方案所需的概念和技术始介绍,之后将介绍如何创建分类器、构建目标检测和语义分割神经网络、训练生成式模型,以及使用TensorFlow 2.0的工具(如TensorFlow Datasets和TensorFlow Hub)加速发过程。 学完本书之后,你将能够使用TensorFlow 2.0发任何机器学习问题的解决方案,并能将它们部署到生产环

一本风格较为轻松,简明易学,可直观参照,并迅速上手实操的AIGC工具使用手册。旨在指导读者如何快速高效地学会使用AIGC工具,并且通过书中的指导流程和作者总结出的高效Prompts(提示词)提高自己向ChatGPT提问的能力,让AIGC工具输出令人满意的高质量创意内容。

采用Python编写的Keras能够快速准确地训练卷积和递归神经网络,这使得Keras在很短的时间里就成为一个流行的深度学习库。 本书介绍了如何在时下流行的Keras库的帮助下,解决训练深度学习模型时遇到的各种问题。从安装和设置Keras始,展示了如何使用Keras行深度学习;从加载数据到拟合、评估模型获得*性能,逐步解决工作过程中遇到的每一个问题。在本书的帮助下,你可以分别实现卷积神经网络、递归神经网络、生成式对抗网络等。除此之外,本书还讲述了如何训练这些模型以完成图像处理和语言处理的任务。 本书*后还给出了一些实例,可以帮助你直观地了解Python和Keras在深度学习上的强大功能 通过阅读本书,你将学到: 在TensorFlow中安装和配置Keras 使用Keras库行神经网络编程 了解不同的Keras层 使用Keras实现简单的前馈神经网络、卷积神经网络和递归神

★立足企业战略管理系统建设。案例覆盖金融、地产、高科技、医药等30个行业,分享国际公司战略咨询经验,推动中国本土企业战略落地。 ★本书兼备全球经典战略管理思想和中国企业战略管理*实践,简捷高效助力初创企业快速成长。 ★本书提出的战略三环方法论,融合了战略咨询与企业内部战略管理的实战经验,并提供大量真实案例和工具指引,易懂易学。 ★丝路视觉集团董事长李萌迪、金地集团副总裁徐家俊、珠海金控集团副总裁秦军、罗兰贝格前中国区合伙人刘则治、美世(Mercer)前中国区总裁张世东、光辉国际(Korn Ferry)全球高级合伙人张军照、华为公司薪酬管理部部长陈萍联合推荐。



1. 人工智能属于当前社会各界关注的热,本书系统地介绍了人工智能的定义、发展历程及其对各个领域的影响,有助于读者从宏观上深刻理解人工智能的本质,把握技术发展趋势。2. 本书为国内原创图书,能够结合我国的实际和政策,更有指导意义。

《人形机器人行业落地与应用》系统介绍了在AI时代,人形机器人的前沿技术探索,人形机器人的法律与伦理,人形机器人的社会影响与未来挑战,以及人形机器人在各领域的应用,为读者搭建了一座从理论到实践的桥梁。

1.通过智能问答系统、文档助手和知识图谱应用三个实战项目的完整解析,使读者深理解LangChain大模型项目发的完整流程。2.详细讲解LangChain的核心概念、设计理念、发环境及基础组件等大模型发的基础知识。3.作者有丰富的大模型发项目经验和培训经验,讲解通俗易懂,深受学员们欢迎。

《ChatGPT Excel高效数据计算与处理:视频教学版》讲述将ChatGPT和Excel两大工具完美结合,为读者呈现了一部极具实用价值的数据处理指南。《ChatGPT Excel高效数据计算与处理:视频教学版》系统性地介绍了ChatGPT的基本用法,以及如何利用ChatGPT整理和优化数据,辅以丰富的Excel函数和技巧,助力读者解决复杂的数据计算与处理问题。 无论是Excel初学者还是希望提高数据处理效率的专业人士,都能从《ChatGPT Excel高效数据计算与处理:视频教学版》中获得实用的知识和技能。 《ChatGPT Excel高效数据计算与处理:视频教学版》内容通俗易懂,配有清晰的步骤和图解。无论您是财务会计、人事行政还是办公文秘,《ChatGPT Excel高效数据计算与处理:视频教学版》都将成为您提升数据处理技能的得力助手。

多模态大模型与AI Agent智能体技术的快速成熟,为未来的AI应用辟了新的可能性,预示着人工智能将在更多领域发挥其深远的影响。本书正是在这样的背景下应运而生。它旨在为读者提供一个全面、深地了解当前多模态大模型与AI Agent智能体最新研究展和实践应用的窗口。全书共8章,力求将最前沿的技术原理、最实用的应用案例及最深刻的行业洞见呈现给读者。

本书详解Spark 3.0 ML机器学习框架行大数据分析与挖掘的方法,配套示例源码、PPT课件、数据集、发环境、思维导图和答疑服务。


深度学习应用所使用的大部分数据是由自然语言处理(NLP)提供的,而TensorFlow是目前比较重要的深度学习框架。面对当今巨量数据流中众多的非结构化数据,本书详细讲解如何将TensorFlow与NLP二者结合以提供有效的工具,以及如何将这些工具应用于具体的NLP任务。 本书首先介绍NLP和TensorFlow的基础知识,之后讲解如何使用Word2vec及其高级扩展,以便通过创建词嵌将词序列转换为深度学习算法可用的向量。本书还介绍如何通过卷积神经网络(CNN)和递归神经网络(RNN)等经典深度学习算法执行句子分类和语言生成等重要的NLP任务。你将学习如何在NLP任务中应用高性能的RNN模型(比如长短期记忆单元),还将认识神经机器翻译,并实现一个神经机器翻译器。 通过阅读本书,你将学到: NLP的核心概念和各种自然语言处理方法 使用TensorFlow函数创建神经网络以完成NLP任务

元宇宙 概念为何突然爆火?Facebook、谷歌、微软都在元宇宙中做了什么?元宇宙将为个人生活带来哪些变化?我们如何利用元宇宙发展创新?本书,你所有关于元宇宙的疑问将会一一揭晓。在现实中不可能的事情,在元宇宙时代,是可以想象和实现的,可以用完全不同的视角来探索和解决现在的问题。元宇宙是多重技术叠加的平台,是 虚拟融合技术x数据技术x网络技术x人工智能 的复合体,元宇宙应用将在可以展望的将来扩展到产业的全领域。人们穿戴上可视设备便可登陆元宇宙,实现VR实景看房、线上参与音乐会、云看展云逛博等等。未来,元宇宙将深刻影响到人们的生活方式。

(1)极验AI 图项目团队倾力之作 (2)资深图神经网络专家多年研究和实践总结,白翔、俞栋等学术界和企业界领军人物强烈推荐 (3)从原理、算法、实现、应用4个维度详细讲解图神经网络,理论与实践相结合 作者亲授 图神经网络 直播课,与图书搭配学习效果更佳! 回放 PPT获取方式: 1.微信关注 华章计算机 (微信号:hzbook_jsj) 2.在后台回复关键词:GNN

本书以边缘计算技术发展为主线,从边缘计算的基本概念、系统架构、相关技术到云计算、雾计算、移动边缘计算及相关范例均做了详细说明。本书既可满足计算机相关专业本科生的需要,也可作为从事边缘计算相关工作的专业人士参考读物,使读者在学习中增强对边缘计算的了解并掌握相关技术。



AI Agent智能体与MCP开发实践:基于Qwen3大模型
(1)AI技术作家、AI应用发王晓华新作,这人真的很牛。(2)工程级别应用案例实现代码,可直复用,算是Agent发新手老手的福利。(3)所有示例与案例代码都经过测试,均可顺利运行,过王晓华图书的小伙伴都知道。(4)众多小示例,以及五大重案例,包括多Agent智能客服、高德地图MCP服务、arXiv科研论文MCP服务、旅游规划智能体、高品质住宅投研智能体,读者根据自己的需求稍微修改一下即可应用于生产实践。(5)智能客服智能体、arXiv科研论文MCP服务、旅游规划智能体、高品质住宅投研智能体,分别代表电商、科研、城市生活、投研分析领域的行业应用解决方案,极具参考价值。(6)系统整合大模型与智能体技术体系,从AIAgent技术体系,到AIAgent发技术栈(微调、提示词、MCP、LangGraph、A2A、RAG、gradio),再到AIAgent发工程案例,全面构建智能体技术的完整知识


《机器学习门与实战 MATLAB实践应用》的编写是作者在多年机器学习及工作经验的基础上,对大量的网络资源、论文和相关书籍行总结、整理、分析而来。全书共分为三部分,分别为机器学习概念篇、MATLAB机器学习基础篇、机器学习算法与MATLAB实践篇。

本书主要讲述非线性系统分析和非线性系统设计的基本理论。




笔者根据多年的学习和工作经验,总结出一条有效的学习路线:先抓主干,后抓枝节。学习一个算法就好比遍历一棵大树上的所有枝节,算法越是复杂其对应的枝叶也就越多。一个算法的学习,笔者将它归结成了5个层次:理解主要思想、掌握算法原理、熟练源模型、完成数学推导和行源码实现,帮助读者分阶段地学习,轻松迈机器学习的大门。

按照从0到1的顺序,引导读者深理解OpenAI API; 10大核心API,涵盖从自然语言处理到复杂数据分析等多个领域; 12个关键应用场景,帮助读者精准应用OpenAI API; 3个标杆案例,展示OpenAI API的创新应用。


(1)星环科技人工智能平台团队合著,凝结星环科技人工智能和大数据团队丰富的实战经验 (2)从技术视角提供当前人工智能相关技术的深介绍,不仅讲解人工智能知识体系的理论基础,也可以指导基于实战的平台环境行操作。 (3)针对各种类型的机器学习问题,基于星环自研的人工智能平台(Sophon)环境,结合真实案例,依照数据、分析、建模的演历程行系统化阐述并行实战讲解。

内容全面 :系统介绍了深度学习算法的基础理论和主流算法模型,如AlexNet、ResNet、BP、LSTM、GAN、CNN等,详细剖析了每个算法的理论推导过程和应用场合。 实用性强 :采用PyTorch 2.x最新框架行实战,通过大量案例实现了计算机视觉、自然语言处理、AIGC等方向的主流算法,读者能够通过实际项目来理解算法思想。 资源丰富 :源了全部课程源代码、课件、代码,本书Github仓库已收获超3000个Star数,并被 机器之心 、 量子位 等媒体报导。

◎畅销书《幸福的陷阱》作者哈里斯博士作品。 ◎基于纳承诺疗法(ACT),在患病、失业、离婚、丧亲、重大意外等艰难时刻,帮助你处理痛苦情绪,跳出生活的陷阱,勇敢前行。




本书适合想要深了解人工智能前沿动态、对ChatGPT类产品感兴趣的读者阅读,能够帮助普通读者快速门,为读者的参与、应用提供机遇与创想。

(1)机器学习等AI技术驱动的智能数据分析是数据分析行业的未来发展方向,所有数据分析师都应该关注。 (2)作者从事数据分析与挖掘10余年,对Python等各种数据分析技术和工具都非常熟悉,在智能数据分析领域也积累了大量的经验。 (3)本书面向零Python基础和零AI基础的读者,精选了*精华的知识,包含大量示例代码,指导读者快速门。

AI摄影与创意设计:Stable Diffusion-ComfyUI

