
本书重介绍因求解大规模问题十分有效而风靡机器学习界的交替方向乘子法,该方法可以广泛应用于机器学习的优化求解,尤其是分布式凸优化问题。


1.以通俗易懂的方式,从数据科学的角度系统的阐释重要且实用的统计学概念,介绍如何将各种统计方法应用于数据科学中; 2.运用清晰的解释和丰富的示例,将实用的统计学术语与数据挖掘实践相结合,适用于数据科学的门初学者; 3.相比于上一版,本书新增了更多Python和R语言示例,读者可以更深的了解如何在数据科学项目中正确运用各种统计方法; 4.通过本书,你将掌握以下知识: 为什么探索性数据分析是启数据科学任务的关键一步 随机抽样如何降低偏差并提高数据集的质量 实验设计原则如何针对问题生成确定性答案 如何使用回归方法估计结果并检测异常 用于预测记录所属类别的主要分类方法 从数据中 学习 的统计机器学习方法 从未标记的数据中提取信息的无监督学习方法

读者对象:机器学习工程师;数据挖掘从业者;数据科学家;信息安全领域的学生和从业人员。 讨论机器学习中的安全性问题,即讨论各种干扰机器学习系统输出正确结果的攻方法以及对应的防御方法。

笔者根据多年的学习和工作经验,总结出一条有效的学习路线:先抓主干,后抓枝节。学习一个算法就好比遍历一棵大树上的所有枝节,算法越是复杂其对应的枝叶也就越多。一个算法的学习,笔者将它归结成了5个层次:理解主要思想、掌握算法原理、熟练源模型、完成数学推导和行源码实现,帮助读者分阶段地学习,轻松迈机器学习的大门。

1.通过智能问答系统、文档助手和知识图谱应用三个实战项目的完整解析,使读者深理解LangChain大模型项目发的完整流程。2.详细讲解LangChain的核心概念、设计理念、发环境及基础组件等大模型发的基础知识。3.作者有丰富的大模型发项目经验和培训经验,讲解通俗易懂,深受学员们欢迎。


本书系统介绍对抗样本的基本原理,从相关的背景知识始,包含搭建学习对抗样本的软硬件环境、常用工具,带领读者快速上手实践。本书作者在安全领域有多年实践经验,对业界常见的方法做了系统的归纳总结,包含大量案例,深浅出,实践性强。本书所有示例代码在GitHub上可以下载:https://github.com/duoergun0729/adversarial_examples 主要内容包括: 对抗样本相关的深度学习背景知识,如梯度、优化器、反向传递等。 如何搭建学习对抗样本的软硬件环境。 对抗样本领域的一些常见图像处理技巧。 常见的白盒攻算法与黑盒攻算法。 对抗样本在目标检测领域的应用。 对抗样本的常见加固算法。 常见的对抗样本工具以及如何搭建NIPS对抗样本竞赛环境。 如何站在巨人的肩膀上,快速生成自己的对抗样本,行攻防对抗


本书融合作者多年从业和教学经验,全面阐述使用Java从非结构化数据中组织和提取有用文本的各种实用方法。 本书重介绍NLP应用中可能遇到的核心NLP任务,每个任务都从问题的描述以及应用领域始,循序渐地行分析并给出解决方案,便于你更好地理解NLP技术,高效地解决实际问题。 全书内容丰富,不仅全面描述和总结了自然语言处理的基础知识,还详细介绍了自然语言处理的多种技术,包括NLP工具、文本分词、文本断句、词性判断、任务识别、文本分类、关系提取和组合应用等。书中结合多个示例行深分析,并采用Java编程语言行处理与结果分析。

随着 元宇宙 热度持续,人们对与元宇宙相关领域、相关产品的关注度越来越高,而元宇宙工程作为数字能力引现实世界、实体经济的口,将会是实现企业硬科技转型升级的新一代发现工具、效率工具、创新工具,这正是本书所要讨论的主题。 本书不仅涵盖了构建元宇宙的理论基础与方法论等内容,还从多个行业领域着手,分析了元宇宙具体的落地实践方法,为读者提供了一个具有很强实操意义的科学总结。 本书还具体介绍了元宇宙工程的创意和设计、元宇宙的根基 数字孪生技术等内容,这些都对读者一步了解元宇宙,并将元宇宙从概念上真正落地提供了重要的参考和启发。

内容全面 :系统介绍了深度学习算法的基础理论和主流算法模型,如AlexNet、ResNet、BP、LSTM、GAN、CNN等,详细剖析了每个算法的理论推导过程和应用场合。 实用性强 :采用PyTorch 2.x最新框架行实战,通过大量案例实现了计算机视觉、自然语言处理、AIGC等方向的主流算法,读者能够通过实际项目来理解算法思想。 资源丰富 :源了全部课程源代码、课件、代码,本书Github仓库已收获超3000个Star数,并被 机器之心 、 量子位 等媒体报导。


u 深度理论探讨与实际应用并重:本书不仅深探讨了构建和训练ChatGPT模型的核心技术,还充分展示了ChatGPT在实际应用中的潜力。 u 全面而深的探索:本书全面介绍了ChatGPT的运行机制、关键算法、实际应用以及未来发展趋势,为读者提供了一个全面深的视角,帮助读者深刻理解ChatGPT及其背后的技术原理和应用潜力。 u 面向不同层次的读者:无论是零基础的AI初学者,还是从事自然语言处理研究的科研人员,以及在文本工作领域的专业人士,本书都为他们提供了深度的理论洞见和实践参考。

《AIAgent发:零基础构建复合智能体》系统地介绍了智能体的核心原理与构建实践,涵盖了当前智能体发的热与流行技术,包括:MCP、A2A、RAG、LangChain、LangGrapsh,以及代码平台扣子等,并提供了从单智能体到复杂智能体的全流程发技术细节。全书以知识+示例的教学方式,循序渐,由浅深,并提供了大量实例演示,以及完整的项目实战,以及智能体的部署与运维技术,可帮助读者系统掌握发技能,并用于解决业务需求与实际问题。《AIAgent发:零基础构建复合智能体》还提供了教学视频,以二维码的形式呈现在书中对应章节,读者在阅读过程中可扫码观看,大大提高学习效率,同时,《AIAgent发:零基础构建复合智能体》还提供配套示例代码,读者可直调用行演练。全书尽可能使用通俗易懂的语言行描述,提供全面的系统的知识与智能体构建方法论,适合对智能体感兴

AI摄影与创意设计:Stable Diffusion-ComfyUI

工信部声称,机器人自动化将是实现 中国制造2025 这一目标的重要工具。中国迎来机器人大发展时代。 ★★从应用需求角度出发,淡化理论,建立工业机器人系统集成的整体概念★★ 本书从工业机器人应用的角度出发,全面地介绍了几款多用途机器人在通用行业的典型应用,内容包括:水平多关节机器人贴标(四轴)、装配机器人(六轴)、视觉贴合机器人、搬运机器人和机器人CNC技术发。内容涵盖工业机器人的基本知识及相关硬件技术、设计理念及实施过程,然后给出完整的操作流程和设计要领。


初学者学习机器学习课程一般都会面临两大障碍。*大障碍是数学基础。机器学习要求有数学基础,书中大量的公式是初学者的噩梦,尤其是对于已经离大学走向工作岗位的爱好者来说,从头始去学习和理解数据分布和模型背后的数学原理需要花费很多的时间和精力,学习周期非常漫长。第二大障碍是编程实践。并不是所有人都擅长编代码,而只有亲手用代码实现机器学习的各种算法,亲眼见到算法解决了实际问题,才能更深理解算法。除非想做高精尖的前沿研究,理论研究和公式推导并非大多数人的专长,如果只是想更合理地应用机器学习来解决实际问题,掌握必需的数学知识就可以理解问题该如何解决,使用Python编程实现机器学习算法也比使用C 或Java等语言容易得多。 本书就是为了让初学者顺利门而设计的。首先,本书只讲述机器学习常用算法的基本原理,并


本书深浅出地介绍了人工智能和大模型的核心概念和算法,以及这些技术是如何发明和发展的。通过阅读本书,读者能够理解大模型背后的技术,感受到它所带来的改变。

《模拟化生存:虚拟与现实之间》是大卫 萨克斯继《模拟的复仇》之后的又一杰作。透过新冠疫情这一全球事件,他带我们穿越数字化的迷雾,探索技术与人类如何更和谐共生。在萨克斯的笔下,未来并不是冰冷的代码和机器,而是充满人性化、社会性和创新的。这不只是一次科技的思考,更是一场关于人、社会和未来的对话。

零基础 :零基础门,手把手教学,1分钟生成会议纪要,3分钟搞定高颜值PPT,复杂数据图表一键生成,面向职场 技术小白 的DeepSeek 多模态AI应用指南。 强价值 :文本AI、图像AI、音频AI、视频AI、AI虚拟人等不同应用工具实践应用,实操演示和详细教学,零门槛,各种职场刚需直抄作业! 重实用 :AI写文案、写代码、做简历、做幻灯片、分析数据、写作公文,面向具体职场巧妙应用,快速提升工作效率。 多场景 :精选60多个典型职场应用场景实践,涵盖30多款主流AI应用,案例丰富、覆盖全面,一书在手,AI应用无忧。 多模态 :文本、图片、视频、音乐、虚拟人 多模态AI应用全面覆盖。

本书使用大量实战案例,将AIGC和增长相结合

《范式变更:碳中和的长潮与大浪》为与碳中和发展紧密相关的政府部门、企业的从业人员,以及大众读者量身定制,从零碳金融到清洁能源,为读者解答未来之路。 权威专家贡献观: 《范式变更:碳中和的长潮与大浪》聚集了中国国际经济交流中心副理事长朱民,诺贝尔经济学奖得主、世界银行前首席经济学家约瑟夫 斯蒂格雷茨,中国气候变化事务特使、国家发展和改革委员会原副主任解振华,中国工程院院士汤广福,华为副董事长、轮值董事长胡厚崑等20余位专家,为读者提供来自不同领域的深刻观,阵容强大,确保读者能够获得最权威的信息。 全面多维度剖析: 《范式变更:碳中和的长潮与大浪》从政策动向、科技展和市场趋势三大维度出发,全面剖析能源、交通、城建、工业、农业和土地等核心产业,为读者提供关于各行业、各领域如何实现碳

国内外服务机器人研发展、服务机器人创业团队未来两三年服务机器人市场发展

和谐人机环境是计算机理论和技术的一个重要的发展方向,也是当前计算机研究的一个热点领域。

元宇宙 概念为何突然爆火?Facebook、谷歌、微软都在元宇宙中做了什么?元宇宙将为个人生活带来哪些变化?我们如何利用元宇宙发展创新?本书,你所有关于元宇宙的疑问将会一一揭晓。在现实中不可能的事情,在元宇宙时代,是可以想象和实现的,可以用完全不同的视角来探索和解决现在的问题。元宇宙是多重技术叠加的平台,是 虚拟融合技术x数据技术x网络技术x人工智能 的复合体,元宇宙应用将在可以展望的将来扩展到产业的全领域。人们穿戴上可视设备便可登陆元宇宙,实现VR实景看房、线上参与音乐会、云看展云逛博等等。未来,元宇宙将深刻影响到人们的生活方式。

(1)机器学习等AI技术驱动的智能数据分析是数据分析行业的未来发展方向,所有数据分析师都应该关注。 (2)作者从事数据分析与挖掘10余年,对Python等各种数据分析技术和工具都非常熟悉,在智能数据分析领域也积累了大量的经验。 (3)本书面向零Python基础和零AI基础的读者,精选了*精华的知识,包含大量示例代码,指导读者快速门。





机器人构建实战 是 卓越之星 的姊妹篇,是在机器人设计制造领域的两个不同平台,是一本基础的介绍机器人设计与搭建的指南,能够帮助更多的人了解机器人的设计、搭建、编程、控制等关键环节,为读者提供更加丰富的设计思路和实践创意。






脑机口研究先驱、巴西世界杯 机械战甲 发明者米格尔 尼科莱利斯扛鼎力作! 外骨骼、脑联网、大脑校园、记忆永生 2015年度关于人类未来*不可错过的 精彩大片 !看脑机口如何激发人类潜能、绘制人类未来新图景! 财讯传媒集团首席战略官段永朝专文推荐!清华大学心理学系主任彭凯平,英特尔中国研究院院长吴甘沙,浙江大学生物医学工程与仪器科学学院教授、求是高等研究院常务副院长郑筱祥,2003年诺贝尔化学奖得主彼得 阿格雷等各界精英联袂推荐! 湛庐文化机器人与人工智能系列。

DeepSeek助力短视频创作拍摄、剪辑、调色与*制作(剪映+Premiere)(全彩微课版)
36个动手练+10个实战演练+42节同步学习视频+24节AIGC拓展学习视频

1.机器学习门手册《机器学习精讲》姊妹篇,人工智能和机器学习领域专业人士的多年实践结晶,深浅出讲解机器学习应用和工程实践。 2.系统阐释利用机器学习大规模地解决业务问题,涉及项目准备工作、数据收集、特征工程、监督模型训练、模型评估、模型部署,以及模型服务、监测和维护等全流程 3.从零始讲解,分任务、分步骤的介绍机器学习项目,展示项目完整设计过程。 4.理论实践相结合侧重于讨论多种实际应用场景,帮助读者应用到实际发中。 5.人工智能和机器学习领域专业人士Cassie Kozyrkov、Karolis Urbonas作序推荐。

1.将推荐系统的思想应用于流程管理 2.充分考虑流程执行的智能化、动态性与柔性 3.充分利用流程管理系统积累的执行日志 4.用切实可行的算法大幅提升工作流管理效率

《给孩子的人工智能课》以生动有趣的方式,向孩子们介绍了人工智能的基本概念、发展历程和应用领域,使他们在轻松愉快的氛围中了解这一前沿技术。不仅能让孩子们了解人工智能的基本知识,还能激发他们对科技创新的兴趣和热情。 《给孩子的人工智能课》不仅是让孩子了解未来科技的门读物,更是激发孩子探索与创新的启蒙之作。通过生动翔实的案例,将复杂深奥的科技概念变得通俗易懂,帮助孩子们更轻松地走人工智能的世界。 复旦大学教授、科学杂志《新发现》荣誉主编 严锋,纽约默西大学数学与计算机科学系终身教授陈志雄 倾情推荐

1.本书借孙悟空师徒四人取经的经典故事科普人工智能技术和应用,阐述自然语言处理、计算机视觉、音视频处理等人工智能技术和应用,配合丰富的实验内容,通过百度EasyDL平台体验AI技术的奥秘; 2.本书寓教于乐,结合课堂教学和实验,以及家庭亲子实践的方式,学习和体验AI技术的奥妙,适合8~16岁青少年学习AI门的启蒙书; 3.教育界多位知名青少年教育专家评推荐。

深度学习应用所使用的大部分数据是由自然语言处理(NLP)提供的,而TensorFlow是目前比较重要的深度学习框架。面对当今巨量数据流中众多的非结构化数据,本书详细讲解如何将TensorFlow与NLP二者结合以提供有效的工具,以及如何将这些工具应用于具体的NLP任务。 本书首先介绍NLP和TensorFlow的基础知识,之后讲解如何使用Word2vec及其高级扩展,以便通过创建词嵌将词序列转换为深度学习算法可用的向量。本书还介绍如何通过卷积神经网络(CNN)和递归神经网络(RNN)等经典深度学习算法执行句子分类和语言生成等重要的NLP任务。你将学习如何在NLP任务中应用高性能的RNN模型(比如长短期记忆单元),还将认识神经机器翻译,并实现一个神经机器翻译器。 通过阅读本书,你将学到: NLP的核心概念和各种自然语言处理方法 使用TensorFlow函数创建神经网络以完成NLP任务

通过本书,你将学会如何使用TensorFlow行移动端机器学习应用的发,以及了解如下内容: ● TensorFlow对移动平台支持的起源和思路 ● TensorFlow对硬件加速技术的支持 ● TensorFlow Lite的架构和实现原理 ● TensorFlow在各种移动平台和嵌式平台上的发实例 ● 基于TensorFlow和谷歌云行机器学习的方法 ● 基于TensorFlow的机器学习服务框架 ● 基于TensorFlow的各种源技术和工程实践

◎畅销书《幸福的陷阱》作者哈里斯博士作品。 ◎基于纳承诺疗法(ACT),在患病、失业、离婚、丧亲、重大意外等艰难时刻,帮助你处理痛苦情绪,跳出生活的陷阱,勇敢前行。

《细说机器学习:从理论到实践》是一个详细介绍现代机器学习理论、经典算法与流行框架及编程实现的机器学习门书。 从统计学、线性代数与概率论等机器学习的基础知识讲起,然后介绍机器学习的基本概念,继 而讲解常用算法与编程实现,最后介绍高级知识、框架实践与项目案例,兼顾理论与应用,详 尽易懂。 每个知识配合示例练习,全书共设计200多个编程实例,向读者展示机器学习算法与框架的实际应用。 全书涉及面广,如神经网络、卷积网络、集成学习、迁移学习等当前机器学习热均有所涉及 。 结合作者多年机器学习研究与发经验,采用流行的Python语言实现,讲解细致,娓娓道来, 适合转型想人工智能领域的大学生、发人员、技术人员和研究人员阅读。


人工智能不仅赢得了围棋的*对决,而且随着 2018年10月25日一幅由AI绘制的名为《埃德蒙 贝拉米肖像》的画作,在美国纽约佳士得拍卖行以43.25万美元的价格售出,人工智能技术也里程碑式地绘画艺术市场。那么,想了解AI技术是如何完成绘画艺术创作的呢?本书为你揭其中利用生成对抗网络(GAN)技术行绘画的奥秘。 《生成对抗网络门指南》是一本结合了基础理论与工程实践的 GAN门书籍,深浅出地讲解了GAN的技术发展以及各种衍生模型。本书面向机器学习从业人员、高校相关专业学生以及具备一定基础的人工智能爱好者,书中包含GAN的理论知识和代码实践。通过阅读本书,读者可以理解GAN的技术原理与实现方法。


读者对象:本书非常适合知道如何在 Python 中编程并了解深度学习基础知识的读者。本书面向具有传统机器学习实践经验,或希望在实践中探索深度学习世界并将其实现部署到生产中的发人员。 本书是一本深度学习实践指南,聚焦于PyTorch深度学习各场景的动手实现,不涉及模型层面的原理剖析。书中通过大量示例及代码,详细展示如何使用PyTorch构建深度学习模型原型、构建深度学习工作流和将原型用于生产。全书共7章。第1章介绍使用PyTorch行深度学习的方法和PyTorch的基本API;第2章演示如何构建一个简单神经网络;第3章深探讨深度学习工作流和PyTorch生态系统;第4章介绍基于PyTorch构建的CNN;第5章介绍RNN并探讨序列数据处理;第6章详细介绍生成对抗网络(GAN);第7章介绍强化学习;第8章介绍将PyTorch应用于生产的三种不同方法。

读者对象: 1)人工智能相关专业的研究人员;2)信息科学和计算机科学爱好者;3)统计学或相关IT专业学生;4)不具备专业数学知识的人群。 (1)三位作者资历深厚,分别是阿里巴巴的数据架构师和NLP专家、百炼智能的NLP专家(前明略数据的技术合伙人和科学家)、七牛云AI实验室NLP OCR方向负责人; (2)以实战为导向,绕各种复杂数学公式与证明,确保读者零基础门,详细讲解自然语言处理 的各种核心技术、方法论和经典算法; (3)阿里巴巴达摩院高级算法专家、百炼智能CEO、七牛云AI LAB负责人、天善智能创始人联袂推荐。

《华尔街日报》**商业书籍、《科克斯书评》**书籍、围《洛杉矶时报》科技图书奖、加州大学伯克利分校全体教师及新生书。 《连线》杂志联合创始人凯文 凯利、连机发明者丹尼尔 希利斯、Boing Boing网站联席主席科利 多克托罗、《纽约时报书评》《波士顿环球报》《经济学人》《西雅图时报》《卫报》等多家媒体联袂推荐! 代码如何管这个世界呢?通过追溯从艾伦 图灵的一维模型如何发展到约翰 冯 诺依曼的二维实现,《图灵的大教堂》提出了一系列关于当下的三维数字宇宙可能走向何处的预见性看法。 湛庐文化出品。

MLlib是Apache Spark机器学习库。本书入门简单,实例丰富,详解协同过滤、线性回归、分类、决策树、保序回归、聚类、关联、数据降维、特征提取和转换等MLlib主要算法,用实例说明MLlib大数据机器学习算法的运用。

全面、深剖析机器学习的算法原理和模型构建等核心技术 结合大量实例和两个实战项目案例展现各种算法的实际应用 详解监督学习、无监督学习和强化学习的理论基础与应用场景 详解模型训练中的风险函数、参数寻优方法,以及欠拟合与过拟合解决方案 深解析机器学习常用经典模型的基本原理及其Python实现 详解数据标准化、异常值检测、缺失值处理和特征筛选等数据预处理技术 详解两个典型项目实战案例,带领读者动手实践,提高实际发水平 内容丰富:详解机器学习的基础知识和相关算法原理并行实践,还对深度学习的基础知识行讲解,帮助读者系统掌握机器学习的完整知识体系。 循序渐:从机器学习的基本概念和环境搭建始讲解,逐步深其算法原理和模型构建等核心技术,最后行项目实战,学习梯度非常平滑。 理论结合实践:不仅深剖析机器学习的常用算


读者对象: 希望了解TensorFlow结构和新特性的数据科学家、机器学习的发人员、深度学习的研究人员和具有统计知识的发者。要充分利用这本书,需要你掌握Python编程语言方面的知识。 TensorFlow是流行的、使用广泛的机器学习框架,它使得每个人都能轻松发机器学习解决方案。使用TensorFlow 2.0,你将研究一个改后的框架结构,它提供了大量的新特性,以提升发者的工作效率和便于发者使用。 本书通过聚焦于发基于神经网络的解决方案来介绍机器学习。本书从构建深度学习解决方案所需的概念和技术始介绍,之后将介绍如何创建分类器、构建目标检测和语义分割神经网络、训练生成式模型,以及使用TensorFlow 2.0的工具(如TensorFlow Datasets和TensorFlow Hub)加速发过程。 学完本书之后,你将能够使用TensorFlow 2.0发任何机器学习问题的解决方案,并能将它们部署到生产环

神经网络已成为从大量原始的,看似无关的数据中提取有用知识的强大技术。 Java语言是用于实现神经网络的zui合适的工具之一,也是现阶段非常流行的编程语言之一,包含多种有助于发的API和包,具有 一次编写,随处运行 的可移植性。本书完整地演示了使用Java发神经网络的过程,既有非常基础的实例也有高级实例。首先,你将学习神经网络的基础知识、感知机及其特征。 然后,你将使用学到的概念来实现自组织映射网络。 此外,你还会了解一些应用,如天气预报、疾病诊断、客户特征分析和光学字符识别(OCR)等。 zui后,你将学习实时优化和自适应神经网络的方法。首先,你将学习神经网络的基础知识和它们的学习过程。 然后我们关注感知机及其特征。 下来,您将使用您学到的概念实现自组织映射。 此外,您将了解一些应用,如天气预报,疾病诊断,客户