

(1)极验AI 图项目团队倾力之作 (2)资深图神经网络专家多年研究和实践总结,白翔、俞栋等学术界和企业界领军人物强烈推荐 (3)从原理、算法、实现、应用4个维度详细讲解图神经网络,理论与实践相结合 作者亲授 图神经网络 直播课,与图书搭配学习效果更佳! 回放 PPT获取方式: 1.微信关注 华章计算机 (微信号:hzbook_jsj) 2.在后台回复关键词:GNN


本书通过严谨简明的预备知识介绍,首先帮助读者掌握有关大模型架构、分布式训练等理论知识;然后围绕造首先行业智能助手这一有重大价值的实际问题,向读者展示如何将该问题分解为一系列大模型技术,并展示完整的技术实施和优化过程。 本书侧重于行业实践。同时对涉及的相关理论、框架原理行一定深度的讲解。这样既降低了门难度,又提升了实践的高度。

《给孩子的人工智能课》以生动有趣的方式,向孩子们介绍了人工智能的基本概念、发展历程和应用领域,使他们在轻松愉快的氛围中了解这一前沿技术。不仅能让孩子们了解人工智能的基本知识,还能激发他们对科技创新的兴趣和热情。 《给孩子的人工智能课》不仅是让孩子了解未来科技的门读物,更是激发孩子探索与创新的启蒙之作。通过生动翔实的案例,将复杂深奥的科技概念变得通俗易懂,帮助孩子们更轻松地走人工智能的世界。 复旦大学教授、科学杂志《新发现》荣誉主编 严锋,纽约默西大学数学与计算机科学系终身教授陈志雄 倾情推荐


人工智能相关领域面试、笔试、经验心得、算法、考、难、真题解析一应俱全,获取高薪 在这里,有面试笔试常见技巧的提炼与总结; 在这里,有面试笔试高频人工智能领域相关知识的整理与剖析; 在这里,有面试笔试历年人工智能领域相关真题的解答与拓展。

DeepSeek助力短视频创作拍摄、剪辑、调色与*制作(剪映+Premiere)(全彩微课版)
36个动手练+10个实战演练+42节同步学习视频+24节AIGC拓展学习视频

微软搜索技术部门高级研发工程师实战经验分享 从源代码的角度深剖析Storm设计与实现 学习如何实现和高效利用“实时的Hadoop” 大数据处理是当前计算机科技的热,而流式实时大数据处理更是这皇冠上璀璨的明珠。实时流数据处理在搜索引擎、社交网络、电商网站、广告平台等领域有着相当广泛的应用。Storm是极其高效、灵活、高扩展的流式数据处理平台。它被Twitter、Taobao、Yahoo、Groupon等公司采用。 本书由微软公司互联网工程院经验丰富的一线程序员操刀编写,包含很多实战经验和使用心得,很好地结合了代码分析和应用实例。本书对于行流式数据处理的研究、Storm的深理解以及实际应用都有很好的参考价值。

机器人构建实战 是 卓越之星 的姊妹篇,是在机器人设计制造领域的两个不同平台,是一本基础的介绍机器人设计与搭建的指南,能够帮助更多的人了解机器人的设计、搭建、编程、控制等关键环节,为读者提供更加丰富的设计思路和实践创意。

采用Python编写的Keras能够快速准确地训练卷积和递归神经网络,这使得Keras在很短的时间里就成为一个流行的深度学习库。 本书介绍了如何在时下流行的Keras库的帮助下,解决训练深度学习模型时遇到的各种问题。从安装和设置Keras始,展示了如何使用Keras行深度学习;从加载数据到拟合、评估模型获得*性能,逐步解决工作过程中遇到的每一个问题。在本书的帮助下,你可以分别实现卷积神经网络、递归神经网络、生成式对抗网络等。除此之外,本书还讲述了如何训练这些模型以完成图像处理和语言处理的任务。 本书*后还给出了一些实例,可以帮助你直观地了解Python和Keras在深度学习上的强大功能 通过阅读本书,你将学到: 在TensorFlow中安装和配置Keras 使用Keras库行神经网络编程 了解不同的Keras层 使用Keras实现简单的前馈神经网络、卷积神经网络和递归神


针对如何快速把握大数据与人工智能的精髓、避免陷过多的数学细节推导的问题,以及人工智能算法和大数据平台技术的结合问题,本书作者做出了不懈探索。一是选材上,不仅分别单独讲授人工智能和大数据,还突出两者相结合的内容。二是内容上,突出浅显易懂,繁杂的数学推导适当做减法,宏观的介绍和实战技能适当做加法。三是结构上,由浅深,由宏观到比较围观,由基础知识到新技术,由理论到实践。本书主要突出优如下。1.知识覆盖全。对大数据与人工智能领域的常用基础技术、算法、模型均有介绍,保障读者知识体系的完整性。而目前市场上相当同类书只涉及本领域其中的几个问题,使读者不能较好得从宏观角度来体会大数据和人工智能的技术。2.知识覆盖新。紧跟本领域zui新研究成果。尤其重介绍了深度学习基础知识及其应用。深度学习是当前人工

机器学习是人工智能领域中非常重要的一个研究方向,而深度学习作为机器学习的重要组成部分,伴随着近几年数据规模的增长和计算力的提升而备受关注。深度学习框架的快速发展大大降低了算法的门门槛,越来越多的深度学习从业者能够通过这些框架实现算法并应用到生活场景中,让我们的生活更加智能和便捷。 通过阅读本书,你将学到: MXNet、TensorFlow、Pytorch、Caffe等深度学习框架的差异 MXNet框架各主要模块的技术原理和应用实践 MXNet在图像分类、目标检测、图像分割中的应用,以及相关算法的训练、模型测试和实现细节 基于动态图构建网络结构的Gluon口 MXNet专门为计算机视觉任务推出的深度学习库GluonCV 从零始实现深度学习和计算机视觉算法的方法



零基础 :零基础门,手把手教学,1分钟生成会议纪要,3分钟搞定高颜值PPT,复杂数据图表一键生成,面向职场 技术小白 的DeepSeek 多模态AI应用指南。 强价值 :文本AI、图像AI、音频AI、视频AI、AI虚拟人等不同应用工具实践应用,实操演示和详细教学,零门槛,各种职场刚需直抄作业! 重实用 :AI写文案、写代码、做简历、做幻灯片、分析数据、写作公文,面向具体职场巧妙应用,快速提升工作效率。 多场景 :精选60多个典型职场应用场景实践,涵盖30多款主流AI应用,案例丰富、覆盖全面,一书在手,AI应用无忧。 多模态 :文本、图片、视频、音乐、虚拟人 多模态AI应用全面覆盖。

适读人群: 本书可以作为高等院校人工智能、电子信息工程、物联网工程、数据科学与大数据技术、通信工程等专业高年级本科生以及智能科学与技术、信号与信息处理、网络空间安全、通信与信息系统等学科研究生的参考教材,也可供从事语音处理技术研究与应用的科研及工程技术人员参考。 十余年深耕智能语音处理的研究结晶 人工智能在语音处理领域的应用成果

《微控制器的应用(全国高职高专院校规划教材)》由曹金玲主编,本书以AT89S52单片机为对象,重介绍单片机的应用技术。全书共有6章,包含12个训练项目,内容包括单片机基础知识、单片机寻址方式与指令系统、中断与定时、并行输与输出、串行通信、A/D和D/A转换等,每章后配有练习题和讨论题。

1. 人工智能属于当前社会各界关注的热,本书系统地介绍了人工智能的定义、发展历程及其对各个领域的影响,有助于读者从宏观上深刻理解人工智能的本质,把握技术发展趋势。2. 本书为国内原创图书,能够结合我国的实际和政策,更有指导意义。

工信部声称,机器人自动化将是实现 中国制造2025 这一目标的重要工具。中国迎来机器人大发展时代。 ★★从应用需求角度出发,淡化理论,建立工业机器人系统集成的整体概念★★ 本书从工业机器人应用的角度出发,全面地介绍了几款多用途机器人在通用行业的典型应用,内容包括:水平多关节机器人贴标(四轴)、装配机器人(六轴)、视觉贴合机器人、搬运机器人和机器人CNC技术发。内容涵盖工业机器人的基本知识及相关硬件技术、设计理念及实施过程,然后给出完整的操作流程和设计要领。


1)通俗性 每章的标题就是对该章内容的高度概括,在下来的内容中对其行的解释已尽可能做到了准确、翔实。 2)完整性 本书从终端安全的科学内涵、技术解析、关键要素、实现细节到具体应用案例都行了周详的论述。 3)实用性 本书紧密结合应用实际,从安全需求、科学分析到技术支持、应用实践等各方面行分析和论述。



复杂系统暨鲁棒控制的理论和应用(Theory and Applications of Complex Systems a

本书使用大量实战案例,将AIGC和增长相结合

(1)机器学习等AI技术驱动的智能数据分析是数据分析行业的未来发展方向,所有数据分析师都应该关注。 (2)作者从事数据分析与挖掘10余年,对Python等各种数据分析技术和工具都非常熟悉,在智能数据分析领域也积累了大量的经验。 (3)本书面向零Python基础和零AI基础的读者,精选了*精华的知识,包含大量示例代码,指导读者快速门。

Python是一门通用型编程语言,也是一门相对容易学习的语言。因此,数据科学家在为中小规模的数据集制作原型、实现可视化和分析数据时,经常选择使用Python。本书填补了机器学习和Web发之间的鸿沟。本书重讲解在Web应用中实现预测分析功能的难,重介绍Python语言及相关框架、工具和库,展示了如何搭建机器学习系统。你将从本书学到机器学习的核心概念,学习如何将数据部署到用Django框架发的Web应用;还将学到如何挖掘Web、文档和服务器端数据以及如何搭建推荐引擎。随后,你将一步探索功能强大的Django框架,学习搭建一个简单、具备现代感的影评情感分析应用,它可是用机器学习算法驱动的!本书是写给正努力成为数据科学家的读者以及新晋的数据科学家的。读者应该具备一些机器学习经验。如果你对发智能(具备预测功能的)Web应用感兴趣,或正在从事相

分身的代感:分身即自我,分身即媒介。本书从影子、镜像、自画像、摄影术到元宇宙时代的数字分身,结合作品和案例,讲述了艺术创作媒介的演变,视角独特。 书中大量理论结合案例,融合哲学、生物学、人类学等诸多学科,对元宇宙艺术的创作者、服务者、研究者和投资者,都极具参考和启发作用,本书可谓元宇宙艺术史的篇之作。 全书用哲学的思维方式,科学的逻辑架构,来解构元宇宙艺术。有别于绝大多数元宇宙相关的书将 元宇宙 物化或概念化,本书将元宇宙放在人类感知与创造的发展脉络中,作为意识形态完善及提升的阶阶段。 清华大学美术学院教授李睦作序推荐。



《探秘机器人王国(第2版》是一部长篇科普小说。故事始于机器人王国的一则爆炸性新闻,即机器人要求和人类平等、与人类平分天下。为了探究那里到底发生了什么,主人公林灵(长衫市的初二学生)作为代表,同全世界各路媒体、学者一起,来到 机器人王国 考察,并前往各个国家的机器人产业了解机器人的真实样貌。全书分为18章,从历史、基本结构、工农林业、空间和海洋探索、国防与安保、医疗、家政服务、文化娱乐、教育等多方面,介绍了机器人发展的现状,为读者展现了一幅多彩的机器人画卷。以往机器人容易给人留下的机械工具、触感冰冷、没有感情、令人恐惧等印象转化为智能助手、幽默温和、感情丰富的新认知。希望通过本书,能够和广大读者分享机器人技术发展的真实现状,认识到真正的 机器人王国 是什么样子的,了解它们在人类生活中


初学者学习机器学习课程一般都会面临两大障碍。*大障碍是数学基础。机器学习要求有数学基础,书中大量的公式是初学者的噩梦,尤其是对于已经离大学走向工作岗位的爱好者来说,从头始去学习和理解数据分布和模型背后的数学原理需要花费很多的时间和精力,学习周期非常漫长。第二大障碍是编程实践。并不是所有人都擅长编代码,而只有亲手用代码实现机器学习的各种算法,亲眼见到算法解决了实际问题,才能更深理解算法。除非想做高精尖的前沿研究,理论研究和公式推导并非大多数人的专长,如果只是想更合理地应用机器学习来解决实际问题,掌握必需的数学知识就可以理解问题该如何解决,使用Python编程实现机器学习算法也比使用C 或Java等语言容易得多。 本书就是为了让初学者顺利门而设计的。首先,本书只讲述机器学习常用算法的基本原理,并




《华尔街日报》**商业书籍、《科克斯书评》**书籍、围《洛杉矶时报》科技图书奖、加州大学伯克利分校全体教师及新生书。 《连线》杂志联合创始人凯文 凯利、连机发明者丹尼尔 希利斯、Boing Boing网站联席主席科利 多克托罗、《纽约时报书评》《波士顿环球报》《经济学人》《西雅图时报》《卫报》等多家媒体联袂推荐! 代码如何管这个世界呢?通过追溯从艾伦 图灵的一维模型如何发展到约翰 冯 诺依曼的二维实现,《图灵的大教堂》提出了一系列关于当下的三维数字宇宙可能走向何处的预见性看法。 湛庐文化出品。

脑机口研究先驱、巴西世界杯 机械战甲 发明者米格尔 尼科莱利斯扛鼎力作! 外骨骼、脑联网、大脑校园、记忆永生 2015年度关于人类未来*不可错过的 精彩大片 !看脑机口如何激发人类潜能、绘制人类未来新图景! 财讯传媒集团首席战略官段永朝专文推荐!清华大学心理学系主任彭凯平,英特尔中国研究院院长吴甘沙,浙江大学生物医学工程与仪器科学学院教授、求是高等研究院常务副院长郑筱祥,2003年诺贝尔化学奖得主彼得 阿格雷等各界精英联袂推荐! 湛庐文化机器人与人工智能系列。

1.本书借孙悟空师徒四人取经的经典故事科普人工智能技术和应用,阐述自然语言处理、计算机视觉、音视频处理等人工智能技术和应用,配合丰富的实验内容,通过百度EasyDL平台体验AI技术的奥秘; 2.本书寓教于乐,结合课堂教学和实验,以及家庭亲子实践的方式,学习和体验AI技术的奥妙,适合8~16岁青少年学习AI门的启蒙书; 3.教育界多位知名青少年教育专家评推荐。


适读人群: NLP相关领域的师生; 工作中应用NLP领域技术的人; 算转型NLP的人。 (1)作者涂铭是数据架构师和人工智能技术专家,先后就职于阿里和腾讯,在NLP和聊天机器人方面积累了大量经验。 (2)作者杜振东是国家标准委人工智能技术专家和AIIA(中国人工智能产业发展联盟)技术专家,在会话式AI方面有多年积累,项目经验丰富。 (3)不仅详解了NLP和人机交互核心技术,从技术、算法、实战3个维度讲解聊天机器人原理、实现与工程实践。 (4)前瞻性强,专注于NLP和人机交互的前沿技术,以及会话式AI技术在热门场景中的工程实践。 (5)实战性强,每章都提供实战代码,大部分代码简单修改后便可在实际场景中使用;数据集并非简单构造,而是具有真实性。 (6)对比性强,结合应用场景,对比不同技术的优劣,既能指导读者行技术选型,又


读者对象:机器学习工程师;数据挖掘从业者;数据科学家;信息安全领域的学生和从业人员。 讨论机器学习中的安全性问题,即讨论各种干扰机器学习系统输出正确结果的攻方法以及对应的防御方法。

《细说机器学习:从理论到实践》是一个详细介绍现代机器学习理论、经典算法与流行框架及编程实现的机器学习门书。 从统计学、线性代数与概率论等机器学习的基础知识讲起,然后介绍机器学习的基本概念,继 而讲解常用算法与编程实现,最后介绍高级知识、框架实践与项目案例,兼顾理论与应用,详 尽易懂。 每个知识配合示例练习,全书共设计200多个编程实例,向读者展示机器学习算法与框架的实际应用。 全书涉及面广,如神经网络、卷积网络、集成学习、迁移学习等当前机器学习热均有所涉及 。 结合作者多年机器学习研究与发经验,采用流行的Python语言实现,讲解细致,娓娓道来, 适合转型想人工智能领域的大学生、发人员、技术人员和研究人员阅读。

人工智能不仅赢得了围棋的*对决,而且随着 2018年10月25日一幅由AI绘制的名为《埃德蒙 贝拉米肖像》的画作,在美国纽约佳士得拍卖行以43.25万美元的价格售出,人工智能技术也里程碑式地绘画艺术市场。那么,想了解AI技术是如何完成绘画艺术创作的呢?本书为你揭其中利用生成对抗网络(GAN)技术行绘画的奥秘。 《生成对抗网络门指南》是一本结合了基础理论与工程实践的 GAN门书籍,深浅出地讲解了GAN的技术发展以及各种衍生模型。本书面向机器学习从业人员、高校相关专业学生以及具备一定基础的人工智能爱好者,书中包含GAN的理论知识和代码实践。通过阅读本书,读者可以理解GAN的技术原理与实现方法。

读者对象:希望在预测分析和机器学习领域建立扎实基础的机器学习工程师、数据工程师和数据科学家 1)便于学习,所有的理论后都附有基于Python的具体实例; 2)版本新,适用Python3.5以上版本; 3)实例丰富,场景多样,配套代码完备。

(1)百度旗下“深度学习技术及应用国家工程实验室”、百度技术学院联合北航人工智能专家共同撰写,行业实践与学术理论兼顾 (2)李德毅院士、百度公司总裁张亚勤博士、百度公司高级副总裁/AI技术平台体系总负责人王海峰、北京航空航天大学计算机学院教授/博士生导师吕卫锋 、百度技术委员会理事长/百度技术学院院长陈尚义联袂推荐


◎畅销书《幸福的陷阱》作者哈里斯博士作品。 ◎基于纳承诺疗法(ACT),在患病、失业、离婚、丧亲、重大意外等艰难时刻,帮助你处理痛苦情绪,跳出生活的陷阱,勇敢前行。

深度学习应用所使用的大部分数据是由自然语言处理(NLP)提供的,而TensorFlow是目前比较重要的深度学习框架。面对当今巨量数据流中众多的非结构化数据,本书详细讲解如何将TensorFlow与NLP二者结合以提供有效的工具,以及如何将这些工具应用于具体的NLP任务。 本书首先介绍NLP和TensorFlow的基础知识,之后讲解如何使用Word2vec及其高级扩展,以便通过创建词嵌将词序列转换为深度学习算法可用的向量。本书还介绍如何通过卷积神经网络(CNN)和递归神经网络(RNN)等经典深度学习算法执行句子分类和语言生成等重要的NLP任务。你将学习如何在NLP任务中应用高性能的RNN模型(比如长短期记忆单元),还将认识神经机器翻译,并实现一个神经机器翻译器。 通过阅读本书,你将学到: NLP的核心概念和各种自然语言处理方法 使用TensorFlow函数创建神经网络以完成NLP任务

神经网络已成为从大量原始的,看似无关的数据中提取有用知识的强大技术。 Java语言是用于实现神经网络的zui合适的工具之一,也是现阶段非常流行的编程语言之一,包含多种有助于发的API和包,具有 一次编写,随处运行 的可移植性。本书完整地演示了使用Java发神经网络的过程,既有非常基础的实例也有高级实例。首先,你将学习神经网络的基础知识、感知机及其特征。 然后,你将使用学到的概念来实现自组织映射网络。 此外,你还会了解一些应用,如天气预报、疾病诊断、客户特征分析和光学字符识别(OCR)等。 zui后,你将学习实时优化和自适应神经网络的方法。首先,你将学习神经网络的基础知识和它们的学习过程。 然后我们关注感知机及其特征。 下来,您将使用您学到的概念实现自组织映射。 此外,您将了解一些应用,如天气预报,疾病诊断,客户

《细说机器学习:从理论到实践》是一个详细介绍现代机器学习理论、经典算法与流行框架及编程实现的机器学习门书。 从统计学、线性代数与概率论等机器学习的基础知识讲起,然后介绍机器学习的基本概念,继 而讲解常用算法与编程实现,最后介绍高级知识、框架实践与项目案例,兼顾理论与应用,详 尽易懂。 每个知识配合示例练习,全书共设计200多个编程实例,向读者展示机器学习算法与框架的实际应用。 全书涉及面广,如神经网络、卷积网络、集成学习、迁移学习等当前机器学习热均有所涉及 。 结合作者多年机器学习研究与发经验,采用流行的Python语言实现,讲解细致,娓娓道来, 适合转型想人工智能领域的大学生、发人员、技术人员和研究人员阅读。




本书以边缘计算技术发展为主线,从边缘计算的基本概念、系统架构、相关技术到云计算、雾计算、移动边缘计算及相关范例均做了详细说明。本书既可满足计算机相关专业本科生的需要,也可作为从事边缘计算相关工作的专业人士参考读物,使读者在学习中增强对边缘计算的了解并掌握相关技术。

1.热结合。 2017年,国务院发布了《新一代人工智能发展规划》。2022年政府工作报告中提出,促数字经济发展,完善数字经济治理,释放数据要素潜力,更好赋能经济发展、丰富人民生活。2023年4月28日,政治局会议指出 重视通用人工智能发展 ,2023年5月5日,中央财经委会议强调,要把握人工智能等新科技革命浪潮,适应人与自然和谐共生的要求,保持并增强产业体系完备和配套能力强的优势,高效集聚全球创新要素,推产业智能化、绿色化、融合化,建设具有完整性、先性、安全性的现代化产业体系。 2.创新性。 从ChatGPT,到AIGC,再到AGI。目前市场上围绕数字经济、人工智能方面的图书品类较多,但以全球视野展望通用人工智能发展方面的图书品类较少。数字经济时代推动下,人工智能作为关键性的新型技术能力,被视为数字经济发展的助推器和推动力,本书

读者对象:本书非常适合知道如何在 Python 中编程并了解深度学习基础知识的读者。本书面向具有传统机器学习实践经验,或希望在实践中探索深度学习世界并将其实现部署到生产中的发人员。 本书是一本深度学习实践指南,聚焦于PyTorch深度学习各场景的动手实现,不涉及模型层面的原理剖析。书中通过大量示例及代码,详细展示如何使用PyTorch构建深度学习模型原型、构建深度学习工作流和将原型用于生产。全书共7章。第1章介绍使用PyTorch行深度学习的方法和PyTorch的基本API;第2章演示如何构建一个简单神经网络;第3章深探讨深度学习工作流和PyTorch生态系统;第4章介绍基于PyTorch构建的CNN;第5章介绍RNN并探讨序列数据处理;第6章详细介绍生成对抗网络(GAN);第7章介绍强化学习;第8章介绍将PyTorch应用于生产的三种不同方法。