
本书从调优、并行、向量化、构建管道等深度学习基础知识始,逐步深,通过现实生活中的例子,展现深度网络架构的方法和策略。本书避免了艰深的理论讨论,而是针对实际问题提供了必要的指引。-深理解机器学习和深度学习基本概念-了解从神经网络到深度网络的演化历程-探索主流深度网络架构,包括卷积神经网络和循环神经网络-了解如何将特定的深度网络应用于适合的问题-全面了解通用的对神经网络和特定深度网络架构调优的基础知识-学习针对不同类型数据的向量化技术以及如何在Spark和Hadoop平台上原生地使用DL4J



32个案例实战,实操实练,能让您快速上手,并举一反三,创作出新颖、独特、火爆的AI数字人效果!70集教学视频,可随时随地全程查看操作过程,有效解决问题、难,让学习更轻松、高效!80多个素材 效果文件+150多页PPT教学课件等资源,助您轻松、快速实现多种效果的产出!

随着计算机技术、大数据科学以及深度计算理论的发展,人工智能已广泛应用于各行 各业,把人工智能技术作为大学教育的通识课程,已经成为各高等学校的通行做法。但如 何设面向所有专业的人工智能课程,这是一件具有挑战性的教学改革课题。本书的作者 们在总结多年来人工智能相关领域科学研究的基础上,结合通识课程的要求,编写了这本 书。这是一个有意义的尝试。


机器人构建实战 是 卓越之星 的姊妹篇,是在机器人设计制造领域的两个不同平台,是一本基础的介绍机器人设计与搭建的指南,能够帮助更多的人了解机器人的设计、搭建、编程、控制等关键环节,为读者提供更加丰富的设计思路和实践创意。

机器学习正在迅速成为数据驱动型世界的一个bi备模块。许多不同的领域,如机器人、医学、零售和出版等,都需要依赖这门技术。通过阅读 Python机器学习实践指南 ,你将学习如何一步步构建真实的机器学习应用程序。Python机器学习实践指南 以通俗易懂,简洁明了的方式,教你如何使用机器学习来收集、分析并操作大量的数据。通过易于理解的项目,本书讲解如何处理各种类型的数据、如何以及何时应用不同的机器学习技术,包括监督学习和无监督学习。本书中的每个项目都同时提供了教学和实践,你将学习如何使用聚类技术来发现低价的机票,以及如何使用线性回归找到一间便宜的公寓 。Python机器学习实践指南 适合的读者包括了解数据科学的Python程序员、数据科学家、架构师,以及想要构建完整的、基于Python的机器学习系统的人们。通过阅读Python机器学习实践

1.本书引用国内外大量理论研究和实践经验,内容翔实。 2.本书作者有数百家企业的服务经验,对于数字经济的背景、发展及相关框架有着非常清晰的认知。 3.本书从少见的经济学视角出发,而非常见的产业视角,为读者提供了不同维度的数字经济概念。 4.本书语言通俗易通,可以面向各类读者,无论是初学者还是研究者。


计算机视觉解决方案日益普及,在医疗、汽车、社交媒体和机器人等领域取得了不错的展。本书将帮助你了解全新版本的谷歌机器学习源框架TensorFlow 2,你将掌握如何使用卷积神经网络(CNN)完成视觉任务。本书从计算机视觉和深度学习基础知识始,教你如何从头始构建神经网络。你将掌握一些让TensorFlow成为广泛使用的AI库的特性,以及直观的Keras口,继而高效地构建、训练和部署CNN。通过具体的代码示例,本书展示了如何使用Inception和ResNet等现代神经网络分类图像,以及如何使用YOLO、Mask R-CNN和U-Net提取特定内容。本书还将介绍如何构建生成式对抗网络(GAN)和变分自编码器(VAE)来生成和编辑图像,以及如何使用LSTM分析视频。在此过程中,你将深了解迁移学习、数据增强、域适应,以及移动设备和Web部署等高级知识以及其他关键概念。通过阅读本书,你将获得使

本书紧跟人工智能主流技术和应用趋势,文字通俗易懂,图文并茂,将抽象的问题简单化,选取人工智能典型应用案例为载体,运用Python高效语言,突出人工智能计算思维和方法的培养,以任务为驱动,抽丝剥茧,以问题为导向递式展学习内容。

读者对象: 希望了解TensorFlow结构和新特性的数据科学家、机器学习的发人员、深度学习的研究人员和具有统计知识的发者。要充分利用这本书,需要你掌握Python编程语言方面的知识。 TensorFlow是流行的、使用广泛的机器学习框架,它使得每个人都能轻松发机器学习解决方案。使用TensorFlow 2.0,你将研究一个改后的框架结构,它提供了大量的新特性,以提升发者的工作效率和便于发者使用。 本书通过聚焦于发基于神经网络的解决方案来介绍机器学习。本书从构建深度学习解决方案所需的概念和技术始介绍,之后将介绍如何创建分类器、构建目标检测和语义分割神经网络、训练生成式模型,以及使用TensorFlow 2.0的工具(如TensorFlow Datasets和TensorFlow Hub)加速发过程。 学完本书之后,你将能够使用TensorFlow 2.0发任何机器学习问题的解决方案,并能将它们部署到生产环

针对如何快速把握大数据与人工智能的精髓、避免陷过多的数学细节推导的问题,以及人工智能算法和大数据平台技术的结合问题,本书作者做出了不懈探索。一是选材上,不仅分别单独讲授人工智能和大数据,还突出两者相结合的内容。二是内容上,突出浅显易懂,繁杂的数学推导适当做减法,宏观的介绍和实战技能适当做加法。三是结构上,由浅深,由宏观到比较围观,由基础知识到新技术,由理论到实践。本书主要突出优如下。1.知识覆盖全。对大数据与人工智能领域的常用基础技术、算法、模型均有介绍,保障读者知识体系的完整性。而目前市场上相当同类书只涉及本领域其中的几个问题,使读者不能较好得从宏观角度来体会大数据和人工智能的技术。2.知识覆盖新。紧跟本领域zui新研究成果。尤其重介绍了深度学习基础知识及其应用。深度学习是当前人工

使用深度学习行人脸识别是近年来AI研究的热之一。本书可以帮助读者掌握深度学习的核心内容、TensorFlow实现人脸识别的技术要以及从模型构建到应用程序编写的整套技巧。



本书是工业智能新技术系列中的一本,基于智能硬件发方向的一个产品,是一本可以边做边学的实用指南、智能家居DIY的必选教程。适合对机器人相关技术感兴趣的读者阅读,也适合作为普通高校相关专业的工程创新实训、课程设计、科研竞赛及实验指导教程。


本书对近年来数字人产业的发展和现状进行了研究,是数字人行业的首本产业报告。


使用深度学习行语音识别是近年来AI研究的热之一。本书可以帮助读者掌握深度学习的核心内容、TensorFlow实现语音识别的技术要以及从模型构建到应用程序编写的整套技巧。

提出如下3种算法: ① 基于三维项集矩阵和向量的频繁项集挖掘算法。 ② 融合惩罚因子和时间权重的协同过滤算法。 ③ 基于用户属性和项目评分的协同过滤算法。 给出了一个图书推荐原型系统的构建方案。

本书是介绍如何在产品中使用TensorFlow的实用教程。本书介绍了可以使用TensorFlow的多种情况, 并通过真实世界的项目, 向读者展示了如何使用TensorFlow。本书还讲解了在实际环境中使用TensorFlow的创新方法。本书主要介绍第二代机器学习与数值计算,提供了训练模型、机器学习、深度学习以及使用各种神经网络的项目,以此来讲解TensorFlow的应用领域,还讨论如何使用TensorFlow计算复杂数值。本书在教读者使用TensorFlow的同时,还展示了如何使用张量来探究各层的数据。只需选定一个跟读者环境相匹配的项目,就能学到如何在产品中应用TensorFlow的相关知识。读完本书后,读者将能通过TensorFlow有效改善项目的速度和效率。本书包括以下内容:● 加载、交互、剖析、处理和存储复杂数据集;● 使用先的技术来解决分类和回归问题;● 使用线性回归模型预测简单时间序列的

详细阐述了宁波市智能制造的案例。

本书不仅融合了关于生成式AI、深度学习、神经 网络的理论知识,还用幽默的语言与漫画讲解人工智能的底层理论体系和数学模型。 小白也能看懂的人工智能漫画科普; 没有公式,没有代码,故事有趣,轻松易读; 通过学习本书轻松门人工智能,启人工智能领域探索之旅。

《细说机器学习:从理论到实践》是一个详细介绍现代机器学习理论、经典算法与流行框架及编程实现的机器学习门书。 从统计学、线性代数与概率论等机器学习的基础知识讲起,然后介绍机器学习的基本概念,继 而讲解常用算法与编程实现,最后介绍高级知识、框架实践与项目案例,兼顾理论与应用,详 尽易懂。 每个知识配合示例练习,全书共设计200多个编程实例,向读者展示机器学习算法与框架的实际应用。 全书涉及面广,如神经网络、卷积网络、集成学习、迁移学习等当前机器学习热均有所涉及 。 结合作者多年机器学习研究与发经验,采用流行的Python语言实现,讲解细致,娓娓道来, 适合转型想人工智能领域的大学生、发人员、技术人员和研究人员阅读。

跟随《机器人爱好者》令人激动的机器人世界吧!《机器人爱好者》内容精选自《SERVO》杂志,针对中国读者的需求和喜好,行了精选和重组,每年出版3辑。第3辑共包括5章内容,涵盖了机器人技术的现状和未来、机器人产品体验、用PICAXE处理器和BASIC编程来实现机器人、机器人DIY 和机器人新资讯等方面的精彩内容。《机器人爱好者》系列专辑内容实践性强,既可以帮助国内的爱好者和从业人员了解国外机器人的发展动向,也可以给机器人研发人员提供创意和灵感。另外,本系列图书也非常适合参加各类机器人竞赛的大学生和中学生以及指导老师参考。欢迎爱好者们向我们投稿。不论您有新鲜的资讯分享,成功的产品案例,还是参加竞赛的获奖作品,都可以发送邮件至:contact@epubit.com.cn。本书包含以下精彩内容:我们能从 ARPA 机器人挑战 中学到什么人工智能和机器



1.将推荐系统的思想应用于流程管理 2.充分考虑流程执行的智能化、动态性与柔性 3.充分利用流程管理系统积累的执行日志 4.用切实可行的算法大幅提升工作流管理效率

适读人群: NLP相关领域的师生; 工作中应用NLP领域技术的人; 算转型NLP的人。 (1)作者涂铭是数据架构师和人工智能技术专家,先后就职于阿里和腾讯,在NLP和聊天机器人方面积累了大量经验。 (2)作者杜振东是国家标准委人工智能技术专家和AIIA(中国人工智能产业发展联盟)技术专家,在会话式AI方面有多年积累,项目经验丰富。 (3)不仅详解了NLP和人机交互核心技术,从技术、算法、实战3个维度讲解聊天机器人原理、实现与工程实践。 (4)前瞻性强,专注于NLP和人机交互的前沿技术,以及会话式AI技术在热门场景中的工程实践。 (5)实战性强,每章都提供实战代码,大部分代码简单修改后便可在实际场景中使用;数据集并非简单构造,而是具有真实性。 (6)对比性强,结合应用场景,对比不同技术的优劣,既能指导读者行技术选型,又

AIGC近年来发展迅速。想要深观察和理解 AIGC,需要系统性地学习、思考和实践。《洞察AIGC:智能创作的应用、机遇与挑战》一书正是应对这样的需求产生,希望本书能够帮助读者从爱好者转变成专业的思考者、理解者,再一步找到自己运用或发展 AIGC 的领域与路径。



知识图谱作为当前人工智能的重要方向之一,不仅被实验室的研究者关注,更被各行各业的商业应用所关注。知识图谱是一个古老而又崭新的课题,是知识工程在新时代的新形态。智能离不知识。知识始终是人工智能的核心之一。本书按照知识表示、知识库构建、知识推理和知识应用的基本脉络,全面介绍有关知识图谱的前沿技术。为便于理解和融会贯通,本书也对相关 NLP与机器学习的基本知识与知识图谱的经典传统方法行了适当描述。 本书既可作为人工智能领域研究人员的技术参考书,也可作为高等院校相关专业师生的教学参考书。


1.权威作者团队,确保选题的专业性 2.内容由浅深,通俗易懂,针对不同年龄层的孩子因材施教 3.理论知识和实践操作相结合,富含科学性、趣味性 4.丰富多元案例:书中穿插大量来自生活的真实AI应用案例,让孩子直观感受人工智能在现实世界的强大影响力,拓宽视野,激发对前沿科技的探索热情 5.培养综合素养:通过学习人工智能知识,锻炼孩子的逻辑思维、创新能力、问题解决能力

读者对象: 1、人工智能领域的技术工程师,尤其是机器学习和深度学习领域的工程师; 2、高校人工智能专业学生、教师以及研究人员; 3、希望了解人工智能尤其是深度学习的技术工程师和产品经理。 (1)本书由百度官方出品,PaddlePaddle总架构师共同创作。 (2)百度公司CTO王海峰博士作序,张钹院士、李未院士、百度集团副总裁吴甜联袂推荐 (3) 内容全面、由浅深、注重实践 ,结合新近PaddlePaddle技术版本,详细讲解了PaddlePaddle的技术和原理,以及如何从零始快速掌握深度学习。

(1)作者来自于微软亚洲研究院,在人工智能、大数据和算法等领域经验非常丰富。 (2)以实战为导向的深度学习全栈技术指南,作者凭借多年经验,精选初学者需要掌握的知识精要,大大降低深度学习的门槛 (3)详细讲解深度学习的知识系统、核心技术和算法,以及它们在机器视觉、语音识别、人脸识别、自动驾驶等领域的应用

1. 李国杰院士新作,承载了他多年来在计算机科学领域深研究的工作结晶 2. 产学研三重背景,兼具工程科学与人文科学的思维 3. 涵盖了科技自立自强、理解人工智能、做强先计算、人才培养教育等多个方面,内容深度广度兼备,引发读者深思考科技创新的未来。 4. 关注信息科学技术发展,倡导自主创新品牌建设。书中分享了科研中所遇到的挑战,以及克服困难的经验方法,对于年轻科研工作者来说具有很好的启示作用。

人工智能的安全性是当今人们广泛关注的热话题。人们在享受人工智能技术给生活带来各种便利的同时,无时无刻不在担心人工智能技术可能会带来的各种风险。 本书就为读者答疑解惑,全方面、多视角地深剖析人工智能安全这一主题,内容丰富精彩。 本书由中国工程院院士方滨兴亲自主编,作者格局大、站位高,具有强烈的使命感、责任感,以全方位、多学科的研究方法,创性地诠释了人工智能安全主题,使本书具有创新性、前瞻性、实用性。

1.知识丰富实用。基于人工智能发平台实现,帮助读者行人工智能模型的自我创作,激发读者对人工智能的兴趣,学习人工智能知识,明确人工智能要素,掌握人工智能技术应用流程。 2.内容详细,讲解可靠。本书深浅出地讲解了人工智能发平台的相关内容,涉及理论介绍、平台特、平台优势、发案例以及相关配套的赛事等。 3.理论与实践相结合。不仅介绍人工智能发平台相关技术的基本应用和实现,而且讨论多种实际应用场景,帮助读者真正理解并应用到实际发中。

深剖析智能制造现状与趋势; 综合科技和社会两个视角说明为什么智能化是中国制造业的必经之路; 以鲜活的案例阐释人工智能、物联网等革新技术,到底给制造业带来什么; 揭示云计算、工业互联网对于智能制造的平台支撑作用

1.本书适用于计算机科学及其他相关专业的本科院校、高等职业院校师生,对于需要参加计算机考试,或者得希望自学计算机软件发的人员也有较大的帮助。 2.本书全面系统地介绍了计算机科学教育中的一个重要组成部分——数据结构,并以Java语言实现相关的算法。

深度序列模型与自然语言处理:基于TensorFlow 2实践
《深度序列模型与自然语言处理:基于TensorFlow2实践》旨在帮助读者掌握深度学习和自然语言处理的基本原理和实际运用,讲述了最新的研究成果,以及人们最感兴趣的深度学习生成自然语言等热门领域。此外,《深度序列模型与自然语言处理:基于TensorFlow2实践》提供了基于深度学习框架TensorFlow的实际编程示例,使理论与实践相辅相成。

工信部声称,机器人自动化将是实现 中国制造2025 这一目标的重要工具。中国迎来机器人大发展时代。 ★★从应用需求角度出发,淡化理论,建立工业机器人系统集成的整体概念★★ 本书从工业机器人应用的角度出发,全面地介绍了几款多用途机器人在通用行业的典型应用,内容包括:水平多关节机器人贴标(四轴)、装配机器人(六轴)、视觉贴合机器人、搬运机器人和机器人CNC技术发。内容涵盖工业机器人的基本知识及相关硬件技术、设计理念及实施过程,然后给出完整的操作流程和设计要领。


Array

1.本书对大数据与人工智能有一个综述性的介绍,包括大数据的本体论、机器学习的基本理论等内容,为具体场景、算法的实践奠定了基础。。 2.同时也提供了多个不同场景中的用例,帮助读者了解真实场景中技术工具的使用。 3.本书作者Anand Deshpande和Manish Kumar分别是Datametica Solutions的大数据交付总监和高级技术架构师,他们在数据生态系统技术和数据管理方面拥有丰富的经验。 数据与人工智能是未来几十年的重要发展方向。随着人工智能的快速应用及普及,大数据不断累积,深度学习及强化学习等算法不断优化,大数据技术将与人工智能技术更紧密地结合,具备对数据的理解、分析、发现和决策能力。

《细说机器学习:从理论到实践》是一个详细介绍现代机器学习理论、经典算法与流行框架及编程实现的机器学习门书。 从统计学、线性代数与概率论等机器学习的基础知识讲起,然后介绍机器学习的基本概念,继 而讲解常用算法与编程实现,最后介绍高级知识、框架实践与项目案例,兼顾理论与应用,详 尽易懂。 每个知识配合示例练习,全书共设计200多个编程实例,向读者展示机器学习算法与框架的实际应用。 全书涉及面广,如神经网络、卷积网络、集成学习、迁移学习等当前机器学习热均有所涉及 。 结合作者多年机器学习研究与发经验,采用流行的Python语言实现,讲解细致,娓娓道来, 适合转型想人工智能领域的大学生、发人员、技术人员和研究人员阅读。

对如何快速把握大数据与人工智能的精髓、避免陷过多的数学细节推导的问题,以及人工智能算法和大数据平台技术的结合问题,本书作者做出了不懈探索。 1.选材上,不仅分别单独讲授人工智能和大数据,还突出两者相结合的内容。 2.内容上,突出浅显易懂,繁杂的数学推导适当做减法,宏观的介绍和实战技能适当做加法。 3.结构上,由浅深,由宏观到比微观,由基础知识到新技术,由理论到实践。 本书主要突出优如下: 1.知识覆盖全。本书共七章,对大数据与人工智能领域的常用基础技术、算法、模型均有介绍,保障读者知识体系的完整性。 2.知识覆盖新。本书紧跟本领域*研究成果。尤其重介绍了深度学习基础知识及其应用。深度学习是当前人工智能领域的潮流和趋势。另外,本书新版所增加的强化学习是机器学习新兴起的一个类别,在许多领域都具有重要

1.内容全面 俯瞰全领域,网罗人工智能发基础理论和技术; 2.图文并茂 334张图示帮助理解,以图配文,知识清晰直观; 3.专业实用 详略得当,辅以公式和代码,为深研究基础。 知识涵盖: 机器学习/深度学习/强化学习/图像和语音的模式识别/自然语言处理/分布式计算

西安电子科技大学人工智能学院系*直属高校首个致力于人工智能领域高端人才培养、创新成果研发和高层次团队培育的实体性学院。本书提供了西电三十多年的人工智能人才培养心得,构建了具有西电特色的本硕博一体化育人体系,是*全面的人工智能学院人才培养体系教科书。

本书对智能制造理论、政府政策推动、企业*实践等三个维度行有机整合,力求为读者展现全球智能制造恢弘演化的立体画卷。通过大量的理论前沿、客观数据和管理事实,更加具体且直地描述智能制造的发展与实践,并给出了全球*产业 汽车制造的中外实践,以及国家竞争能力典型代表 国防军工的*创新应用。

面向移动设备的深度学习—基于TensorFlow Lite,ML Kit和Flutter
深度学习正迅速成为业界热门的话题。《面向移动设备的深度学习 基于TensorFlow Lite,ML Kit和Flutter》采用以工业和移动应用为中心的方法介绍深度学习的概念及其用例。本书将讨论一系列项目,涵盖移动视觉、面部识别、智能AI助手和增强现实等任务。

AIGC与智能体开发实战:基于开源大模型+Serverless API

1. 多个AI应用案例。本书提供了多个AI应用的实际案例,让读者直观地看到AI已经可以出色地完成很多任务。从绘画、视频制作到科研等各种领域,你将发现 AIGC(人工智能生成内容)工具的强大。 2. 工具丰富实用。在一个个具体的实际场景中介绍好用的AI工具,包括ChatGPT、Midjourney、DALL E、AutoCut、DEVONthink、 Elicit、 LEX等。读者能够具体地看到用工具解决问题的全过程。 3. 授人以鱼,也授人以渔。在一个个工具的介绍下,让读者逐步学会方法,找到适合自己的AI应用方式:发现问题 关注需求 查找工具 使用工具 解决问题,不断螺旋式成长。 4. 清晰展示小米科技联合创立人王川认可的AI使用经验。不仅仅只是介绍一些 AI 工具,还详细阐述了方法论,帮助读者提高对 AI 的认知,增强使用工具的信心和技能。 5. 本书作者----天津师范大学管理学院副教授,硕士研究生导师

内容基础且实用。本书是关于迁移学习技术在NLP领域的实用指南,能够帮助读者快速了解相关的机器学习概念,并将其应用于现实世界的问题。 内容技术新。本书详细介绍了如何使用迁移学习技术来解决新场景、新任务和新环境的问题,使得机器学习系统更加可靠和鲁棒。 具有实战性。本书提供了如何使用迁移学习来改NLP模型的实践指导,读者可以学习如何从预训练模型始,调整以满足确切的需求,从而提供先的结果。 涵盖广泛主题。本书涵盖了各种NLP应用程序,包括垃圾电子邮件分类器、IMDb电影评论情绪分析器、自动事实检查器、问答系统和翻译系统等,使读者能够全面了解迁移学习在NLP领域的应用。 参考价值高。本书不仅适合拥有NLP基础的机器学习和数据科学的发人员阅读,同时也适合高等院校计算机及相关专业的学生和软件学院的学生参考,具有很

(1)作者来自复旦大学,在国内具有一定的影响力,常举办相关的培训和讲座。 (2)教材难度适中、系统性强,内容基本覆盖了机器学习和深度学习的核心内容,深浅出,适合初学者。知识与时俱,行了更新。 (3)教材配套资料齐全,包括对应的PPT、数据素材、程序源代码、测试题等,另外还提供配套的视频。 (4)实践指导性强。作者结合20多家企业的实战合作项目实践,提供300多道原创的选择题、填空和判断题。还有40多个实战案例供读者实验和实训。 (5)工信部 十四五 规划教材。