


一线资深技术专家撰写,凝结其自身多年的实践经验,深浅出阐述深度学习的发展历程、相关概念和工作原理涉及当前流行的两个深度学习工具:Caffe和TensorFlow,并且初步探讨强化学习的基本原理和应用

适读人群: NLP相关领域的师生; 工作中应用NLP领域技术的人; 算转型NLP的人。 (1)作者涂铭是数据架构师和人工智能技术专家,先后就职于阿里和腾讯,在NLP和聊天机器人方面积累了大量经验。 (2)作者杜振东是国家标准委人工智能技术专家和AIIA(中国人工智能产业发展联盟)技术专家,在会话式AI方面有多年积累,项目经验丰富。 (3)不仅详解了NLP和人机交互核心技术,从技术、算法、实战3个维度讲解聊天机器人原理、实现与工程实践。 (4)前瞻性强,专注于NLP和人机交互的前沿技术,以及会话式AI技术在热门场景中的工程实践。 (5)实战性强,每章都提供实战代码,大部分代码简单修改后便可在实际场景中使用;数据集并非简单构造,而是具有真实性。 (6)对比性强,结合应用场景,对比不同技术的优劣,既能指导读者行技术选型,又


多模态大模型与AI Agent智能体技术的快速成熟,为未来的AI应用辟了新的可能性,预示着人工智能将在更多领域发挥其深远的影响。本书正是在这样的背景下应运而生。它旨在为读者提供一个全面、深地了解当前多模态大模型与AI Agent智能体最新研究展和实践应用的窗口。全书共8章,力求将最前沿的技术原理、最实用的应用案例及最深刻的行业洞见呈现给读者。

AI Agent智能体与MCP开发实践:基于Qwen3大模型
(1)AI技术作家、AI应用发王晓华新作,这人真的很牛。(2)工程级别应用案例实现代码,可直复用,算是Agent发新手老手的福利。(3)所有示例与案例代码都经过测试,均可顺利运行,过王晓华图书的小伙伴都知道。(4)众多小示例,以及五大重案例,包括多Agent智能客服、高德地图MCP服务、arXiv科研论文MCP服务、旅游规划智能体、高品质住宅投研智能体,读者根据自己的需求稍微修改一下即可应用于生产实践。(5)智能客服智能体、arXiv科研论文MCP服务、旅游规划智能体、高品质住宅投研智能体,分别代表电商、科研、城市生活、投研分析领域的行业应用解决方案,极具参考价值。(6)系统整合大模型与智能体技术体系,从AIAgent技术体系,到AIAgent发技术栈(微调、提示词、MCP、LangGraph、A2A、RAG、gradio),再到AIAgent发工程案例,全面构建智能体技术的完整知识



1)通俗性 每章的标题就是对该章内容的高度概括,在下来的内容中对其行的解释已尽可能做到了准确、翔实。 2)完整性 本书从终端安全的科学内涵、技术解析、关键要素、实现细节到具体应用案例都行了周详的论述。 3)实用性 本书紧密结合应用实际,从安全需求、科学分析到技术支持、应用实践等各方面行分析和论述。

如果你什么也不懂,那就从这本书开始。

读者对象:1、希望在多个平台的C 环境下始使用OpenCV的计算机视觉新手;2、计算机视觉工程师;3、从初级到高级的各级学生、教师、研究人员;4、其他对计算机视觉和OpenCV感兴趣的人员 1、鼓励 复制 粘贴 运行 这种学习方式并尝试将数学基础保持在*限度; 2、涵盖计算机视觉热门主题,提供完整的项目代码; 3、新增 为项目找到*OpenCV算法 、 避免OpenCV中的常见陷阱 ; 4、超越基础知识,从更高层次来设计和实现复杂图像识别项目。 5、版本新:OpenCV的API(v4.0.0)

读者对象: 1、人工智能领域的技术工程师,尤其是机器学习和深度学习领域的工程师; 2、高校人工智能专业学生、教师以及研究人员; 3、希望了解人工智能尤其是深度学习的技术工程师和产品经理。 (1)本书由百度官方出品,PaddlePaddle总架构师共同创作。 (2)百度公司CTO王海峰博士作序,张钹院士、李未院士、百度集团副总裁吴甜联袂推荐 (3) 内容全面、由浅深、注重实践 ,结合新近PaddlePaddle技术版本,详细讲解了PaddlePaddle的技术和原理,以及如何从零始快速掌握深度学习。


本书通过严谨简明的预备知识介绍,首先帮助读者掌握有关大模型架构、分布式训练等理论知识;然后围绕造首先行业智能助手这一有重大价值的实际问题,向读者展示如何将该问题分解为一系列大模型技术,并展示完整的技术实施和优化过程。 本书侧重于行业实践。同时对涉及的相关理论、框架原理行一定深度的讲解。这样既降低了门难度,又提升了实践的高度。

本书主要讲述非线性系统分析和非线性系统设计的基本理论。

内容全面 :系统介绍了深度学习算法的基础理论和主流算法模型,如AlexNet、ResNet、BP、LSTM、GAN、CNN等,详细剖析了每个算法的理论推导过程和应用场合。 实用性强 :采用PyTorch 2.x最新框架行实战,通过大量案例实现了计算机视觉、自然语言处理、AIGC等方向的主流算法,读者能够通过实际项目来理解算法思想。 资源丰富 :源了全部课程源代码、课件、代码,本书Github仓库已收获超3000个Star数,并被 机器之心 、 量子位 等媒体报导。

《ChatGPT Excel高效数据计算与处理:视频教学版》讲述将ChatGPT和Excel两大工具完美结合,为读者呈现了一部极具实用价值的数据处理指南。《ChatGPT Excel高效数据计算与处理:视频教学版》系统性地介绍了ChatGPT的基本用法,以及如何利用ChatGPT整理和优化数据,辅以丰富的Excel函数和技巧,助力读者解决复杂的数据计算与处理问题。 无论是Excel初学者还是希望提高数据处理效率的专业人士,都能从《ChatGPT Excel高效数据计算与处理:视频教学版》中获得实用的知识和技能。 《ChatGPT Excel高效数据计算与处理:视频教学版》内容通俗易懂,配有清晰的步骤和图解。无论您是财务会计、人事行政还是办公文秘,《ChatGPT Excel高效数据计算与处理:视频教学版》都将成为您提升数据处理技能的得力助手。

1. 本书去繁化简地对深度学习的理论知识行梳理,并对算法实现做出浅显易懂的讲解,方便初学者学习。2. 本书精心挑选大量深度学习的案例,通过启发式的自学模式,使读者由浅深地学习并掌握常用的深度学习模型,快速行实战,为一步使用源深度学习平台与工具提供扎实的理论与实践基础。


本书使用大量实战案例,将AIGC和增长相结合

本书深浅出地介绍了人工智能和大模型的核心概念和算法,以及这些技术是如何发明和发展的。通过阅读本书,读者能够理解大模型背后的技术,感受到它所带来的改变。



本书系统地阐述了过程控制系统的结构、原理、特点、适用场合、系统设计及应用等问题,并在分析稳态和动态数学模型的基础上,探讨了过程工业(石化、化工、轻工、医药等)生产过程中典型单元操作的控制方案,并介绍了典型工业生产过程(合成氨过程、常减压过程、催化裂化过程、乙烯过程、聚合过程、生物发酵过程、制浆造纸过程和冶金过程)的控制。


《范式变更:碳中和的长潮与大浪》为与碳中和发展紧密相关的政府部门、企业的从业人员,以及大众读者量身定制,从零碳金融到清洁能源,为读者解答未来之路。 权威专家贡献观: 《范式变更:碳中和的长潮与大浪》聚集了中国国际经济交流中心副理事长朱民,诺贝尔经济学奖得主、世界银行前首席经济学家约瑟夫 斯蒂格雷茨,中国气候变化事务特使、国家发展和改革委员会原副主任解振华,中国工程院院士汤广福,华为副董事长、轮值董事长胡厚崑等20余位专家,为读者提供来自不同领域的深刻观,阵容强大,确保读者能够获得最权威的信息。 全面多维度剖析: 《范式变更:碳中和的长潮与大浪》从政策动向、科技展和市场趋势三大维度出发,全面剖析能源、交通、城建、工业、农业和土地等核心产业,为读者提供关于各行业、各领域如何实现碳

深度学习应用所使用的大部分数据是由自然语言处理(NLP)提供的,而TensorFlow是目前比较重要的深度学习框架。面对当今巨量数据流中众多的非结构化数据,本书详细讲解如何将TensorFlow与NLP二者结合以提供有效的工具,以及如何将这些工具应用于具体的NLP任务。 本书首先介绍NLP和TensorFlow的基础知识,之后讲解如何使用Word2vec及其高级扩展,以便通过创建词嵌将词序列转换为深度学习算法可用的向量。本书还介绍如何通过卷积神经网络(CNN)和递归神经网络(RNN)等经典深度学习算法执行句子分类和语言生成等重要的NLP任务。你将学习如何在NLP任务中应用高性能的RNN模型(比如长短期记忆单元),还将认识神经机器翻译,并实现一个神经机器翻译器。 通过阅读本书,你将学到: NLP的核心概念和各种自然语言处理方法 使用TensorFlow函数创建神经网络以完成NLP任务

通过本书,你将学会如何使用TensorFlow行移动端机器学习应用的发,以及了解如下内容: ● TensorFlow对移动平台支持的起源和思路 ● TensorFlow对硬件加速技术的支持 ● TensorFlow Lite的架构和实现原理 ● TensorFlow在各种移动平台和嵌式平台上的发实例 ● 基于TensorFlow和谷歌云行机器学习的方法 ● 基于TensorFlow的机器学习服务框架 ● 基于TensorFlow的各种源技术和工程实践




初学者学习机器学习课程一般都会面临两大障碍。*大障碍是数学基础。机器学习要求有数学基础,书中大量的公式是初学者的噩梦,尤其是对于已经离大学走向工作岗位的爱好者来说,从头始去学习和理解数据分布和模型背后的数学原理需要花费很多的时间和精力,学习周期非常漫长。第二大障碍是编程实践。并不是所有人都擅长编代码,而只有亲手用代码实现机器学习的各种算法,亲眼见到算法解决了实际问题,才能更深理解算法。除非想做高精尖的前沿研究,理论研究和公式推导并非大多数人的专长,如果只是想更合理地应用机器学习来解决实际问题,掌握必需的数学知识就可以理解问题该如何解决,使用Python编程实现机器学习算法也比使用C 或Java等语言容易得多。 本书就是为了让初学者顺利门而设计的。首先,本书只讲述机器学习常用算法的基本原理,并

微软搜索技术部门高级研发工程师实战经验分享 从源代码的角度深剖析Storm设计与实现 学习如何实现和高效利用“实时的Hadoop” 大数据处理是当前计算机科技的热,而流式实时大数据处理更是这皇冠上璀璨的明珠。实时流数据处理在搜索引擎、社交网络、电商网站、广告平台等领域有着相当广泛的应用。Storm是极其高效、灵活、高扩展的流式数据处理平台。它被Twitter、Taobao、Yahoo、Groupon等公司采用。 本书由微软公司互联网工程院经验丰富的一线程序员操刀编写,包含很多实战经验和使用心得,很好地结合了代码分析和应用实例。本书对于行流式数据处理的研究、Storm的深理解以及实际应用都有很好的参考价值。

本书详解Spark 3.0 ML机器学习框架行大数据分析与挖掘的方法,配套示例源码、PPT课件、数据集、发环境、思维导图和答疑服务。

◎畅销书《幸福的陷阱》作者哈里斯博士作品。 ◎基于纳承诺疗法(ACT),在患病、失业、离婚、丧亲、重大意外等艰难时刻,帮助你处理痛苦情绪,跳出生活的陷阱,勇敢前行。


本书主要阐述EDA技术和数字系统设计方法,按照“编程器件→设计语言→开发软件→系统设计”的顺序,系统地介绍PLD器件、VHDL设计语言、流行的EDA设计软件和数字系统设计方法等内容,力求涵盖数字系统开发设计中所涉及的主要方面,并在内容上进行精心编排,以着眼于综合开发能力的提高。

DeepSeek助力图形图像处理AI绘图、修复合成、视频生成、Photoshop协同(全彩微课版)
全彩印刷,案例丰富,配72个动手练+17个实战演练+62节同步学习视频+24节AIGC拓展学习视频。

本书系统介绍对抗样本的基本原理,从相关的背景知识始,包含搭建学习对抗样本的软硬件环境、常用工具,带领读者快速上手实践。本书作者在安全领域有多年实践经验,对业界常见的方法做了系统的归纳总结,包含大量案例,深浅出,实践性强。本书所有示例代码在GitHub上可以下载:https://github.com/duoergun0729/adversarial_examples 主要内容包括: 对抗样本相关的深度学习背景知识,如梯度、优化器、反向传递等。 如何搭建学习对抗样本的软硬件环境。 对抗样本领域的一些常见图像处理技巧。 常见的白盒攻算法与黑盒攻算法。 对抗样本在目标检测领域的应用。 对抗样本的常见加固算法。 常见的对抗样本工具以及如何搭建NIPS对抗样本竞赛环境。 如何站在巨人的肩膀上,快速生成自己的对抗样本,行攻防对抗

★立足企业战略管理系统建设。案例覆盖金融、地产、高科技、医药等30个行业,分享国际公司战略咨询经验,推动中国本土企业战略落地。 ★本书兼备全球经典战略管理思想和中国企业战略管理*实践,简捷高效助力初创企业快速成长。 ★本书提出的战略三环方法论,融合了战略咨询与企业内部战略管理的实战经验,并提供大量真实案例和工具指引,易懂易学。 ★丝路视觉集团董事长李萌迪、金地集团副总裁徐家俊、珠海金控集团副总裁秦军、罗兰贝格前中国区合伙人刘则治、美世(Mercer)前中国区总裁张世东、光辉国际(Korn Ferry)全球高级合伙人张军照、华为公司薪酬管理部部长陈萍联合推荐。






本书注重算法理论与实际案例相结合,将枯燥无味的预测算法原理用R语言重现,并通过案例让读者掌握预测模型的应用。 本书源码下载地址:https://github.com/cador/Predictive-Practice-With-R

元宇宙 概念为何突然爆火?Facebook、谷歌、微软都在元宇宙中做了什么?元宇宙将为个人生活带来哪些变化?我们如何利用元宇宙发展创新?本书,你所有关于元宇宙的疑问将会一一揭晓。在现实中不可能的事情,在元宇宙时代,是可以想象和实现的,可以用完全不同的视角来探索和解决现在的问题。元宇宙是多重技术叠加的平台,是 虚拟融合技术x数据技术x网络技术x人工智能 的复合体,元宇宙应用将在可以展望的将来扩展到产业的全领域。人们穿戴上可视设备便可登陆元宇宙,实现VR实景看房、线上参与音乐会、云看展云逛博等等。未来,元宇宙将深刻影响到人们的生活方式。

《国家智能制造标准体系建设指南(2016年版)》的权威案例解读,工业和信息化部部长作序推荐。

《人形机器人行业落地与应用》系统介绍了在AI时代,人形机器人的前沿技术探索,人形机器人的法律与伦理,人形机器人的社会影响与未来挑战,以及人形机器人在各领域的应用,为读者搭建了一座从理论到实践的桥梁。

《给孩子的人工智能课》以生动有趣的方式,向孩子们介绍了人工智能的基本概念、发展历程和应用领域,使他们在轻松愉快的氛围中了解这一前沿技术。不仅能让孩子们了解人工智能的基本知识,还能激发他们对科技创新的兴趣和热情。 《给孩子的人工智能课》不仅是让孩子了解未来科技的门读物,更是激发孩子探索与创新的启蒙之作。通过生动翔实的案例,将复杂深奥的科技概念变得通俗易懂,帮助孩子们更轻松地走人工智能的世界。 复旦大学教授、科学杂志《新发现》荣誉主编 严锋,纽约默西大学数学与计算机科学系终身教授陈志雄 倾情推荐


(1)作者就职于某世界100强企业的数据实验室 (2)作者长期从事人工智能、数据科学、分布式系统等领域的研发工作,在人脸识别领域有丰富的实践经验 (3)核心内容涵盖机器学习、深度学习、计算机视觉、人脸识别等方面的原理、技术和算法 (4)不仅能帮助读者零基础门,而且能指导读者完成工程级别的实践,从零实现一个工程级的人脸识别引擎


针对如何快速把握大数据与人工智能的精髓、避免陷过多的数学细节推导的问题,以及人工智能算法和大数据平台技术的结合问题,本书作者做出了不懈探索。一是选材上,不仅分别单独讲授人工智能和大数据,还突出两者相结合的内容。二是内容上,突出浅显易懂,繁杂的数学推导适当做减法,宏观的介绍和实战技能适当做加法。三是结构上,由浅深,由宏观到比较围观,由基础知识到新技术,由理论到实践。本书主要突出优如下。1.知识覆盖全。对大数据与人工智能领域的常用基础技术、算法、模型均有介绍,保障读者知识体系的完整性。而目前市场上相当同类书只涉及本领域其中的几个问题,使读者不能较好得从宏观角度来体会大数据和人工智能的技术。2.知识覆盖新。紧跟本领域zui新研究成果。尤其重介绍了深度学习基础知识及其应用。深度学习是当前人工

采用Python编写的Keras能够快速准确地训练卷积和递归神经网络,这使得Keras在很短的时间里就成为一个流行的深度学习库。 本书介绍了如何在时下流行的Keras库的帮助下,解决训练深度学习模型时遇到的各种问题。从安装和设置Keras始,展示了如何使用Keras行深度学习;从加载数据到拟合、评估模型获得*性能,逐步解决工作过程中遇到的每一个问题。在本书的帮助下,你可以分别实现卷积神经网络、递归神经网络、生成式对抗网络等。除此之外,本书还讲述了如何训练这些模型以完成图像处理和语言处理的任务。 本书*后还给出了一些实例,可以帮助你直观地了解Python和Keras在深度学习上的强大功能 通过阅读本书,你将学到: 在TensorFlow中安装和配置Keras 使用Keras库行神经网络编程 了解不同的Keras层 使用Keras实现简单的前馈神经网络、卷积神经网络和递归神

(1)机器学习等AI技术驱动的智能数据分析是数据分析行业的未来发展方向,所有数据分析师都应该关注。 (2)作者从事数据分析与挖掘10余年,对Python等各种数据分析技术和工具都非常熟悉,在智能数据分析领域也积累了大量的经验。 (3)本书面向零Python基础和零AI基础的读者,精选了*精华的知识,包含大量示例代码,指导读者快速门。

笔者根据多年的学习和工作经验,总结出一条有效的学习路线:先抓主干,后抓枝节。学习一个算法就好比遍历一棵大树上的所有枝节,算法越是复杂其对应的枝叶也就越多。一个算法的学习,笔者将它归结成了5个层次:理解主要思想、掌握算法原理、熟练源模型、完成数学推导和行源码实现,帮助读者分阶段地学习,轻松迈机器学习的大门。

复杂系统暨鲁棒控制的理论和应用(Theory and Applications of Complex Systems a
