

针对如何快速把握大数据与人工智能的精髓、避免陷过多的数学细节推导的问题,以及人工智能算法和大数据平台技术的结合问题,本书作者做出了不懈探索。一是选材上,不仅分别单独讲授人工智能和大数据,还突出两者相结合的内容。二是内容上,突出浅显易懂,繁杂的数学推导适当做减法,宏观的介绍和实战技能适当做加法。三是结构上,由浅深,由宏观到比较围观,由基础知识到新技术,由理论到实践。本书主要突出优如下。1.知识覆盖全。对大数据与人工智能领域的常用基础技术、算法、模型均有介绍,保障读者知识体系的完整性。而目前市场上相当同类书只涉及本领域其中的几个问题,使读者不能较好得从宏观角度来体会大数据和人工智能的技术。2.知识覆盖新。紧跟本领域zui新研究成果。尤其重介绍了深度学习基础知识及其应用。深度学习是当前人工


1.TensorLayer是一个基于TensorFlow的深度学习发工具。其透明,灵活,高性能的特,使得它得到了大量初学者乃至资深发者的青睐。TensorLayer获得了ACM Multimedia颁发的2017年度*源软件奖。 2.本书是在帝国理工学院计算机系终身教授郭毅可的领导下,由TensorLayer创始人领衔,TensorLayer主要发团队倾力造而成,作者全部来自一线人工智能研究员和工程师,为读者提供了一次非常美妙的AI之旅。 3.本书案例是作者们经过精心挑选后写作的,其中不乏诸如,价值上亿美金的超高分辨率复原、已实际应用在医学上的图像语义分割等黄金案例,值得初学者和研究者们学习参考。 4.本书作者额外提供了案例使用的模型,请到http://www.broadview.com.cn/book/5059下载使用。


AI Agent智能体与MCP开发实践:基于Qwen3大模型
(1)AI技术作家、AI应用发王晓华新作,这人真的很牛。(2)工程级别应用案例实现代码,可直复用,算是Agent发新手老手的福利。(3)所有示例与案例代码都经过测试,均可顺利运行,过王晓华图书的小伙伴都知道。(4)众多小示例,以及五大重案例,包括多Agent智能客服、高德地图MCP服务、arXiv科研论文MCP服务、旅游规划智能体、高品质住宅投研智能体,读者根据自己的需求稍微修改一下即可应用于生产实践。(5)智能客服智能体、arXiv科研论文MCP服务、旅游规划智能体、高品质住宅投研智能体,分别代表电商、科研、城市生活、投研分析领域的行业应用解决方案,极具参考价值。(6)系统整合大模型与智能体技术体系,从AIAgent技术体系,到AIAgent发技术栈(微调、提示词、MCP、LangGraph、A2A、RAG、gradio),再到AIAgent发工程案例,全面构建智能体技术的完整知识


读者对象:机器学习工程师;数据挖掘从业者;数据科学家;信息安全领域的学生和从业人员。 讨论机器学习中的安全性问题,即讨论各种干扰机器学习系统输出正确结果的攻方法以及对应的防御方法。

《探秘机器人王国(第2版》是一部长篇科普小说。故事始于机器人王国的一则爆炸性新闻,即机器人要求和人类平等、与人类平分天下。为了探究那里到底发生了什么,主人公林灵(长衫市的初二学生)作为代表,同全世界各路媒体、学者一起,来到 机器人王国 考察,并前往各个国家的机器人产业了解机器人的真实样貌。全书分为18章,从历史、基本结构、工农林业、空间和海洋探索、国防与安保、医疗、家政服务、文化娱乐、教育等多方面,介绍了机器人发展的现状,为读者展现了一幅多彩的机器人画卷。以往机器人容易给人留下的机械工具、触感冰冷、没有感情、令人恐惧等印象转化为智能助手、幽默温和、感情丰富的新认知。希望通过本书,能够和广大读者分享机器人技术发展的真实现状,认识到真正的 机器人王国 是什么样子的,了解它们在人类生活中


1.通过智能问答系统、文档助手和知识图谱应用三个实战项目的完整解析,使读者深理解LangChain大模型项目发的完整流程。2.详细讲解LangChain的核心概念、设计理念、发环境及基础组件等大模型发的基础知识。3.作者有丰富的大模型发项目经验和培训经验,讲解通俗易懂,深受学员们欢迎。

(1)机器学习等AI技术驱动的智能数据分析是数据分析行业的未来发展方向,所有数据分析师都应该关注。 (2)作者从事数据分析与挖掘10余年,对Python等各种数据分析技术和工具都非常熟悉,在智能数据分析领域也积累了大量的经验。 (3)本书面向零Python基础和零AI基础的读者,精选了*精华的知识,包含大量示例代码,指导读者快速门。

零基础 :零基础门,手把手教学,1分钟生成会议纪要,3分钟搞定高颜值PPT,复杂数据图表一键生成,面向职场 技术小白 的DeepSeek 多模态AI应用指南。 强价值 :文本AI、图像AI、音频AI、视频AI、AI虚拟人等不同应用工具实践应用,实操演示和详细教学,零门槛,各种职场刚需直抄作业! 重实用 :AI写文案、写代码、做简历、做幻灯片、分析数据、写作公文,面向具体职场巧妙应用,快速提升工作效率。 多场景 :精选60多个典型职场应用场景实践,涵盖30多款主流AI应用,案例丰富、覆盖全面,一书在手,AI应用无忧。 多模态 :文本、图片、视频、音乐、虚拟人 多模态AI应用全面覆盖。


本书注重算法理论与实际案例相结合,将枯燥无味的预测算法原理用R语言重现,并通过案例让读者掌握预测模型的应用。 本书源码下载地址:https://github.com/cador/Predictive-Practice-With-R


(1)极验AI 图项目团队倾力之作 (2)资深图神经网络专家多年研究和实践总结,白翔、俞栋等学术界和企业界领军人物强烈推荐 (3)从原理、算法、实现、应用4个维度详细讲解图神经网络,理论与实践相结合 作者亲授 图神经网络 直播课,与图书搭配学习效果更佳! 回放 PPT获取方式: 1.微信关注 华章计算机 (微信号:hzbook_jsj) 2.在后台回复关键词:GNN

《范式变更:碳中和的长潮与大浪》为与碳中和发展紧密相关的政府部门、企业的从业人员,以及大众读者量身定制,从零碳金融到清洁能源,为读者解答未来之路。 权威专家贡献观: 《范式变更:碳中和的长潮与大浪》聚集了中国国际经济交流中心副理事长朱民,诺贝尔经济学奖得主、世界银行前首席经济学家约瑟夫 斯蒂格雷茨,中国气候变化事务特使、国家发展和改革委员会原副主任解振华,中国工程院院士汤广福,华为副董事长、轮值董事长胡厚崑等20余位专家,为读者提供来自不同领域的深刻观,阵容强大,确保读者能够获得最权威的信息。 全面多维度剖析: 《范式变更:碳中和的长潮与大浪》从政策动向、科技展和市场趋势三大维度出发,全面剖析能源、交通、城建、工业、农业和土地等核心产业,为读者提供关于各行业、各领域如何实现碳


本书通过严谨简明的预备知识介绍,首先帮助读者掌握有关大模型架构、分布式训练等理论知识;然后围绕造首先行业智能助手这一有重大价值的实际问题,向读者展示如何将该问题分解为一系列大模型技术,并展示完整的技术实施和优化过程。 本书侧重于行业实践。同时对涉及的相关理论、框架原理行一定深度的讲解。这样既降低了门难度,又提升了实践的高度。

谷歌 AlphaGO 战胜李世石,标志着机器智能新时代来袭 人工智能火热来袭,未来 5 年,人工智能会怎样改变我们的生活?未来 15 年呢? 人工智能的下一个 BAT 会在什么领域产生? 科技大咖倾情推荐,内容涵盖人工智能前沿研究热与发展趋势 分享许多知名学者专家难得的不同角度与侧面认识追求 产生了对人工智能未来发展的天马行空想象空间与好奇 将机器人、无人车、深度学习、大数据、虚拟现实等智能技术的变革结合起来,将预示一个大时代的到来,即所谓的 超智能时代 。《新智元:机器 人类 = 超智能时代》深分析了人工智能时代的技术和发展、机遇和挑战,带我们提前走超智能时代。



本书使用大量实战案例,将AIGC和增长相结合

深度学习应用所使用的大部分数据是由自然语言处理(NLP)提供的,而TensorFlow是目前比较重要的深度学习框架。面对当今巨量数据流中众多的非结构化数据,本书详细讲解如何将TensorFlow与NLP二者结合以提供有效的工具,以及如何将这些工具应用于具体的NLP任务。 本书首先介绍NLP和TensorFlow的基础知识,之后讲解如何使用Word2vec及其高级扩展,以便通过创建词嵌将词序列转换为深度学习算法可用的向量。本书还介绍如何通过卷积神经网络(CNN)和递归神经网络(RNN)等经典深度学习算法执行句子分类和语言生成等重要的NLP任务。你将学习如何在NLP任务中应用高性能的RNN模型(比如长短期记忆单元),还将认识神经机器翻译,并实现一个神经机器翻译器。 通过阅读本书,你将学到: NLP的核心概念和各种自然语言处理方法 使用TensorFlow函数创建神经网络以完成NLP任务

采用Python编写的Keras能够快速准确地训练卷积和递归神经网络,这使得Keras在很短的时间里就成为一个流行的深度学习库。 本书介绍了如何在时下流行的Keras库的帮助下,解决训练深度学习模型时遇到的各种问题。从安装和设置Keras始,展示了如何使用Keras行深度学习;从加载数据到拟合、评估模型获得*性能,逐步解决工作过程中遇到的每一个问题。在本书的帮助下,你可以分别实现卷积神经网络、递归神经网络、生成式对抗网络等。除此之外,本书还讲述了如何训练这些模型以完成图像处理和语言处理的任务。 本书*后还给出了一些实例,可以帮助你直观地了解Python和Keras在深度学习上的强大功能 通过阅读本书,你将学到: 在TensorFlow中安装和配置Keras 使用Keras库行神经网络编程 了解不同的Keras层 使用Keras实现简单的前馈神经网络、卷积神经网络和递归神

u 深度理论探讨与实际应用并重:本书不仅深探讨了构建和训练ChatGPT模型的核心技术,还充分展示了ChatGPT在实际应用中的潜力。 u 全面而深的探索:本书全面介绍了ChatGPT的运行机制、关键算法、实际应用以及未来发展趋势,为读者提供了一个全面深的视角,帮助读者深刻理解ChatGPT及其背后的技术原理和应用潜力。 u 面向不同层次的读者:无论是零基础的AI初学者,还是从事自然语言处理研究的科研人员,以及在文本工作领域的专业人士,本书都为他们提供了深度的理论洞见和实践参考。

读者对象:希望在预测分析和机器学习领域建立扎实基础的机器学习工程师、数据工程师和数据科学家 1)便于学习,所有的理论后都附有基于Python的具体实例; 2)版本新,适用Python3.5以上版本; 3)实例丰富,场景多样,配套代码完备。

(1)星环科技人工智能平台团队合著,凝结星环科技人工智能和大数据团队丰富的实战经验 (2)从技术视角提供当前人工智能相关技术的深介绍,不仅讲解人工智能知识体系的理论基础,也可以指导基于实战的平台环境行操作。 (3)针对各种类型的机器学习问题,基于星环自研的人工智能平台(Sophon)环境,结合真实案例,依照数据、分析、建模的演历程行系统化阐述并行实战讲解。

本书系统介绍对抗样本的基本原理,从相关的背景知识始,包含搭建学习对抗样本的软硬件环境、常用工具,带领读者快速上手实践。本书作者在安全领域有多年实践经验,对业界常见的方法做了系统的归纳总结,包含大量案例,深浅出,实践性强。本书所有示例代码在GitHub上可以下载:https://github.com/duoergun0729/adversarial_examples 主要内容包括: 对抗样本相关的深度学习背景知识,如梯度、优化器、反向传递等。 如何搭建学习对抗样本的软硬件环境。 对抗样本领域的一些常见图像处理技巧。 常见的白盒攻算法与黑盒攻算法。 对抗样本在目标检测领域的应用。 对抗样本的常见加固算法。 常见的对抗样本工具以及如何搭建NIPS对抗样本竞赛环境。 如何站在巨人的肩膀上,快速生成自己的对抗样本,行攻防对抗


和谐人机环境是计算机理论和技术的一个重要的发展方向,也是当前计算机研究的一个热点领域。

1.以通俗易懂的方式,从数据科学的角度系统的阐释重要且实用的统计学概念,介绍如何将各种统计方法应用于数据科学中; 2.运用清晰的解释和丰富的示例,将实用的统计学术语与数据挖掘实践相结合,适用于数据科学的门初学者; 3.相比于上一版,本书新增了更多Python和R语言示例,读者可以更深的了解如何在数据科学项目中正确运用各种统计方法; 4.通过本书,你将掌握以下知识: 为什么探索性数据分析是启数据科学任务的关键一步 随机抽样如何降低偏差并提高数据集的质量 实验设计原则如何针对问题生成确定性答案 如何使用回归方法估计结果并检测异常 用于预测记录所属类别的主要分类方法 从数据中 学习 的统计机器学习方法 从未标记的数据中提取信息的无监督学习方法



如果你什么也不懂,那就从这本书开始。

《机器学习门与实战 MATLAB实践应用》的编写是作者在多年机器学习及工作经验的基础上,对大量的网络资源、论文和相关书籍行总结、整理、分析而来。全书共分为三部分,分别为机器学习概念篇、MATLAB机器学习基础篇、机器学习算法与MATLAB实践篇。



Python是一门通用型编程语言,也是一门相对容易学习的语言。因此,数据科学家在为中小规模的数据集制作原型、实现可视化和分析数据时,经常选择使用Python。本书填补了机器学习和Web发之间的鸿沟。本书重讲解在Web应用中实现预测分析功能的难,重介绍Python语言及相关框架、工具和库,展示了如何搭建机器学习系统。你将从本书学到机器学习的核心概念,学习如何将数据部署到用Django框架发的Web应用;还将学到如何挖掘Web、文档和服务器端数据以及如何搭建推荐引擎。随后,你将一步探索功能强大的Django框架,学习搭建一个简单、具备现代感的影评情感分析应用,它可是用机器学习算法驱动的!本书是写给正努力成为数据科学家的读者以及新晋的数据科学家的。读者应该具备一些机器学习经验。如果你对发智能(具备预测功能的)Web应用感兴趣,或正在从事相

AI摄影与创意设计:Stable Diffusion-ComfyUI



国内外服务机器人研发展、服务机器人创业团队未来两三年服务机器人市场发展


★立足企业战略管理系统建设。案例覆盖金融、地产、高科技、医药等30个行业,分享国际公司战略咨询经验,推动中国本土企业战略落地。 ★本书兼备全球经典战略管理思想和中国企业战略管理*实践,简捷高效助力初创企业快速成长。 ★本书提出的战略三环方法论,融合了战略咨询与企业内部战略管理的实战经验,并提供大量真实案例和工具指引,易懂易学。 ★丝路视觉集团董事长李萌迪、金地集团副总裁徐家俊、珠海金控集团副总裁秦军、罗兰贝格前中国区合伙人刘则治、美世(Mercer)前中国区总裁张世东、光辉国际(Korn Ferry)全球高级合伙人张军照、华为公司薪酬管理部部长陈萍联合推荐。


工信部声称,机器人自动化将是实现 中国制造2025 这一目标的重要工具。中国迎来机器人大发展时代。 ★★从应用需求角度出发,淡化理论,建立工业机器人系统集成的整体概念★★ 本书从工业机器人应用的角度出发,全面地介绍了几款多用途机器人在通用行业的典型应用,内容包括:水平多关节机器人贴标(四轴)、装配机器人(六轴)、视觉贴合机器人、搬运机器人和机器人CNC技术发。内容涵盖工业机器人的基本知识及相关硬件技术、设计理念及实施过程,然后给出完整的操作流程和设计要领。

《国家智能制造标准体系建设指南(2016年版)》的权威案例解读,工业和信息化部部长作序推荐。

《ChatGPT Excel高效数据计算与处理:视频教学版》讲述将ChatGPT和Excel两大工具完美结合,为读者呈现了一部极具实用价值的数据处理指南。《ChatGPT Excel高效数据计算与处理:视频教学版》系统性地介绍了ChatGPT的基本用法,以及如何利用ChatGPT整理和优化数据,辅以丰富的Excel函数和技巧,助力读者解决复杂的数据计算与处理问题。 无论是Excel初学者还是希望提高数据处理效率的专业人士,都能从《ChatGPT Excel高效数据计算与处理:视频教学版》中获得实用的知识和技能。 《ChatGPT Excel高效数据计算与处理:视频教学版》内容通俗易懂,配有清晰的步骤和图解。无论您是财务会计、人事行政还是办公文秘,《ChatGPT Excel高效数据计算与处理:视频教学版》都将成为您提升数据处理技能的得力助手。


本书系统地阐述了过程控制系统的结构、原理、特点、适用场合、系统设计及应用等问题,并在分析稳态和动态数学模型的基础上,探讨了过程工业(石化、化工、轻工、医药等)生产过程中典型单元操作的控制方案,并介绍了典型工业生产过程(合成氨过程、常减压过程、催化裂化过程、乙烯过程、聚合过程、生物发酵过程、制浆造纸过程和冶金过程)的控制。



本书主要阐述EDA技术和数字系统设计方法,按照“编程器件→设计语言→开发软件→系统设计”的顺序,系统地介绍PLD器件、VHDL设计语言、流行的EDA设计软件和数字系统设计方法等内容,力求涵盖数字系统开发设计中所涉及的主要方面,并在内容上进行精心编排,以着眼于综合开发能力的提高。

1.机器学习门手册《机器学习精讲》姊妹篇,人工智能和机器学习领域专业人士的多年实践结晶,深浅出讲解机器学习应用和工程实践。 2.系统阐释利用机器学习大规模地解决业务问题,涉及项目准备工作、数据收集、特征工程、监督模型训练、模型评估、模型部署,以及模型服务、监测和维护等全流程 3.从零始讲解,分任务、分步骤的介绍机器学习项目,展示项目完整设计过程。 4.理论实践相结合侧重于讨论多种实际应用场景,帮助读者应用到实际发中。 5.人工智能和机器学习领域专业人士Cassie Kozyrkov、Karolis Urbonas作序推荐。

1. 李国杰院士新作,承载了他多年来在计算机科学领域深研究的工作结晶 2. 产学研三重背景,兼具工程科学与人文科学的思维 3. 涵盖了科技自立自强、理解人工智能、做强先计算、人才培养教育等多个方面,内容深度广度兼备,引发读者深思考科技创新的未来。 4. 关注信息科学技术发展,倡导自主创新品牌建设。书中分享了科研中所遇到的挑战,以及克服困难的经验方法,对于年轻科研工作者来说具有很好的启示作用。

一直以来,作者刘晋峰就想有一种价格便宜、设计灵活、能培养孩子动手能力和思维训练的机器人制作方法,以普及机器人制作活动。在多年的单片机教学和科普活动辅导中,他发现这其实不难。很多孩子手中废弃的电动玩具就是非常好的机器人制作材料,价格便宜的单片机又为机器人提供了一颗跃动的“芯”。计算机编程和电路设计还能促孩子的学习,充分利用其宝贵的时间。机器人制作完全可以成为一种普及性很高的课外活动,如何引导这项活动成为作者编写《玩机器人学单片机》的初衷。

读者对象:1、希望在多个平台的C 环境下始使用OpenCV的计算机视觉新手;2、计算机视觉工程师;3、从初级到高级的各级学生、教师、研究人员;4、其他对计算机视觉和OpenCV感兴趣的人员 1、鼓励 复制 粘贴 运行 这种学习方式并尝试将数学基础保持在*限度; 2、涵盖计算机视觉热门主题,提供完整的项目代码; 3、新增 为项目找到*OpenCV算法 、 避免OpenCV中的常见陷阱 ; 4、超越基础知识,从更高层次来设计和实现复杂图像识别项目。 5、版本新:OpenCV的API(v4.0.0)

一线资深技术专家撰写,凝结其自身多年的实践经验,深浅出阐述深度学习的发展历程、相关概念和工作原理涉及当前流行的两个深度学习工具:Caffe和TensorFlow,并且初步探讨强化学习的基本原理和应用