

分身的代感:分身即自我,分身即媒介。本书从影子、镜像、自画像、摄影术到元宇宙时代的数字分身,结合作品和案例,讲述了艺术创作媒介的演变,视角独特。 书中大量理论结合案例,融合哲学、生物学、人类学等诸多学科,对元宇宙艺术的创作者、服务者、研究者和投资者,都极具参考和启发作用,本书可谓元宇宙艺术史的篇之作。 全书用哲学的思维方式,科学的逻辑架构,来解构元宇宙艺术。有别于绝大多数元宇宙相关的书将 元宇宙 物化或概念化,本书将元宇宙放在人类感知与创造的发展脉络中,作为意识形态完善及提升的阶阶段。 清华大学美术学院教授李睦作序推荐。

1. 李国杰院士新作,承载了他多年来在计算机科学领域深研究的工作结晶 2. 产学研三重背景,兼具工程科学与人文科学的思维 3. 涵盖了科技自立自强、理解人工智能、做强先计算、人才培养教育等多个方面,内容深度广度兼备,引发读者深思考科技创新的未来。 4. 关注信息科学技术发展,倡导自主创新品牌建设。书中分享了科研中所遇到的挑战,以及克服困难的经验方法,对于年轻科研工作者来说具有很好的启示作用。

MLlib是Apache Spark机器学习库。本书入门简单,实例丰富,详解协同过滤、线性回归、分类、决策树、保序回归、聚类、关联、数据降维、特征提取和转换等MLlib主要算法,用实例说明MLlib大数据机器学习算法的运用。


全面、深剖析机器学习的算法原理和模型构建等核心技术 结合大量实例和两个实战项目案例展现各种算法的实际应用 详解监督学习、无监督学习和强化学习的理论基础与应用场景 详解模型训练中的风险函数、参数寻优方法,以及欠拟合与过拟合解决方案 深解析机器学习常用经典模型的基本原理及其Python实现 详解数据标准化、异常值检测、缺失值处理和特征筛选等数据预处理技术 详解两个典型项目实战案例,带领读者动手实践,提高实际发水平 内容丰富:详解机器学习的基础知识和相关算法原理并行实践,还对深度学习的基础知识行讲解,帮助读者系统掌握机器学习的完整知识体系。 循序渐:从机器学习的基本概念和环境搭建始讲解,逐步深其算法原理和模型构建等核心技术,最后行项目实战,学习梯度非常平滑。 理论结合实践:不仅深剖析机器学习的常用算

人工智能不仅赢得了围棋的*对决,而且随着 2018年10月25日一幅由AI绘制的名为《埃德蒙 贝拉米肖像》的画作,在美国纽约佳士得拍卖行以43.25万美元的价格售出,人工智能技术也里程碑式地绘画艺术市场。那么,想了解AI技术是如何完成绘画艺术创作的呢?本书为你揭其中利用生成对抗网络(GAN)技术行绘画的奥秘。 《生成对抗网络门指南》是一本结合了基础理论与工程实践的 GAN门书籍,深浅出地讲解了GAN的技术发展以及各种衍生模型。本书面向机器学习从业人员、高校相关专业学生以及具备一定基础的人工智能爱好者,书中包含GAN的理论知识和代码实践。通过阅读本书,读者可以理解GAN的技术原理与实现方法。


初学者学习机器学习课程一般都会面临两大障碍。*大障碍是数学基础。机器学习要求有数学基础,书中大量的公式是初学者的噩梦,尤其是对于已经离大学走向工作岗位的爱好者来说,从头始去学习和理解数据分布和模型背后的数学原理需要花费很多的时间和精力,学习周期非常漫长。第二大障碍是编程实践。并不是所有人都擅长编代码,而只有亲手用代码实现机器学习的各种算法,亲眼见到算法解决了实际问题,才能更深理解算法。除非想做高精尖的前沿研究,理论研究和公式推导并非大多数人的专长,如果只是想更合理地应用机器学习来解决实际问题,掌握必需的数学知识就可以理解问题该如何解决,使用Python编程实现机器学习算法也比使用C 或Java等语言容易得多。 本书就是为了让初学者顺利门而设计的。首先,本书只讲述机器学习常用算法的基本原理,并

(1)百度旗下“深度学习技术及应用国家工程实验室”、百度技术学院联合北航人工智能专家共同撰写,行业实践与学术理论兼顾 (2)李德毅院士、百度公司总裁张亚勤博士、百度公司高级副总裁/AI技术平台体系总负责人王海峰、北京航空航天大学计算机学院教授/博士生导师吕卫锋 、百度技术委员会理事长/百度技术学院院长陈尚义联袂推荐