


适读人群: 1.强化学习算法和研发人员 2. 深度学习研发和算法工程师 3. 大数据架构师 4.其他爱好者。 (1)理论完备,涵盖主流经典强化学习算法和深度强化学习算法,并配套理论基础和性能分析。 (2)逐章配套Python代码, 深度强化学习算法同时配套TensorFlow 2和PyTorch 1对照代码。 在GitHub上展示全部代码和运行结果。 (3)环境丰富, 理论讲解部分的环境只依赖于Gym的简化安装,使理论学习免受环境安装困扰;综合案例部分环境既涵盖Gym库的完整安装和自定义扩展,还包括Gym库以外的环境,让读者体验更加复杂的强化学习任务。 全面兼容Windows、macOS和Linux三大操作系统,书中给出环境配置方法。 (4)多个综合案例,涵盖AlphaGo改版算法AlphaZero、自动驾驶等。 (5)对硬件配置要求低,理论讲解部分代码不需要GPU即可运行,综合案例代码只需要普通的GPU即


深度学习应用所使用的大部分数据是由自然语言处理(NLP)提供的,而TensorFlow是目前比较重要的深度学习框架。面对当今巨量数据流中众多的非结构化数据,本书详细讲解如何将TensorFlow与NLP二者结合以提供有效的工具,以及如何将这些工具应用于具体的NLP任务。 本书首先介绍NLP和TensorFlow的基础知识,之后讲解如何使用Word2vec及其高级扩展,以便通过创建词嵌将词序列转换为深度学习算法可用的向量。本书还介绍如何通过卷积神经网络(CNN)和递归神经网络(RNN)等经典深度学习算法执行句子分类和语言生成等重要的NLP任务。你将学习如何在NLP任务中应用高性能的RNN模型(比如长短期记忆单元),还将认识神经机器翻译,并实现一个神经机器翻译器。 通过阅读本书,你将学到: NLP的核心概念和各种自然语言处理方法 使用TensorFlow函数创建神经网络以完成NLP任务

本书语言简明,案例丰富,实用性强,适合有志于机器学习领域的研究者和爱好者、海量数据挖掘与分析人员、金融智能化从业人员阅读,也适合作为高等院校机器学习相关专业的教材。

为了构建稳健的深度学习系统,需要理解神经网络的工作原理以及如何训练CNN模型等知识。通过本书,你可以探索新发的深度学习模型及其在各个领域的使用方法,以及基于应用领域的实现。 本书首先介绍构建模块和神经网络背后的数学知识,然后介绍CNN及其在计算机视觉领域的先应用,以及在对象检测和图像分割中应用流行的CNN架构。还将介绍变分自编码器和GAN,以及如何使用神经网络来提取单词的复杂向量表示。在继续讨论各种类型的循环网络(如LSTM和GRU)之前,会介绍如何在没有RNN的情况下使用注意力机制处理序列数据。然后,介绍如何使用图神经网络处理结构化数据,以及如何使用元学习采用较少的训练样本来训练神经网络。后,了解如何将深度学习应用于自动驾驶汽车。 阅读本书,你将掌握关键的深度学习概念和深度学习模型在现实世界中的不同应用

读者对象:本书非常适合知道如何在 Python 中编程并了解深度学习基础知识的读者。本书面向具有传统机器学习实践经验,或希望在实践中探索深度学习世界并将其实现部署到生产中的发人员。 本书是一本深度学习实践指南,聚焦于PyTorch深度学习各场景的动手实现,不涉及模型层面的原理剖析。书中通过大量示例及代码,详细展示如何使用PyTorch构建深度学习模型原型、构建深度学习工作流和将原型用于生产。全书共7章。第1章介绍使用PyTorch行深度学习的方法和PyTorch的基本API;第2章演示如何构建一个简单神经网络;第3章深探讨深度学习工作流和PyTorch生态系统;第4章介绍基于PyTorch构建的CNN;第5章介绍RNN并探讨序列数据处理;第6章详细介绍生成对抗网络(GAN);第7章介绍强化学习;第8章介绍将PyTorch应用于生产的三种不同方法。

读者对象:希望在预测分析和机器学习领域建立扎实基础的机器学习工程师、数据工程师和数据科学家 1)便于学习,所有的理论后都附有基于Python的具体实例; 2)版本新,适用Python3.5以上版本; 3)实例丰富,场景多样,配套代码完备。

机器人操作系统(ROS)是科研和工业领域非常受欢迎的机器人软件框架。该系统性能强大,可以在机器人中实现多种功能,而不需要从零始实施。 本书首先介绍机器人操作系统的基础知识,以便你了解差分驱动机器人的基本原理。然后,介绍机器人建模知识以及如何使用机器人操作系统行设计和模拟。着将设计机器人硬件和口驱动器。之后,讲述如何使用机器人操作系统对深度传感器和激光雷达行配置和编程。后,将使用Qt框架为机器人创建图形用户界面。 学习完本书内容后,你将清楚地了解如何将所有元素集成和组装到机器人中,以及如何捆绑软件包。 本书将介绍以下内容: ? 如何从头始设计差分驱动机器人。 ? 如何使用机器人操作系统和URDF对差分机器人建模。 ? 如何使用机器人操作系统和Gazebo模拟差分机器人。 ? 如何设计机器人硬件电子器件。 ? 如何将机器


读者对象: 1.机器学习与人工智能方向的从业者;2.XGBoost应用发人员;3.机器学习、数据挖掘研究方向的学生;4.机器学习或源软件爱好者 【学习路线图】免费领取 搭配图书学习效果更佳! 获取方式: 1、微信关注 华章计算机 2、在后台回复关键词:XGBoost 1)知名互联网公司工程师撰写,通高效机器学习脉络,掌握竞赛神器、集成学习中集大成者 XGBoost 2)以机器学习基础知识做铺垫,深剖析XGBoost原理、分布式实现、模型优化、深度应用等

(1)星环科技人工智能平台团队合著,凝结星环科技人工智能和大数据团队丰富的实战经验 (2)从技术视角提供当前人工智能相关技术的深介绍,不仅讲解人工智能知识体系的理论基础,也可以指导基于实战的平台环境行操作。 (3)针对各种类型的机器学习问题,基于星环自研的人工智能平台(Sophon)环境,结合真实案例,依照数据、分析、建模的演历程行系统化阐述并行实战讲解。


读者对象:机器学习工程师;数据挖掘从业者;数据科学家;信息安全领域的学生和从业人员。 讨论机器学习中的安全性问题,即讨论各种干扰机器学习系统输出正确结果的攻方法以及对应的防御方法。


(1)极验AI 图项目团队倾力之作 (2)资深图神经网络专家多年研究和实践总结,白翔、俞栋等学术界和企业界领军人物强烈推荐 (3)从原理、算法、实现、应用4个维度详细讲解图神经网络,理论与实践相结合 作者亲授 图神经网络 直播课,与图书搭配学习效果更佳! 回放 PPT获取方式: 1.微信关注 华章计算机 (微信号:hzbook_jsj) 2.在后台回复关键词:GNN

当今组织创建的分析和机器学习(ML)模型超过一半从未投生产。机器学习运营化的一些挑战和障碍是技术性的,但其他则是组织性的。无论采取哪种方式解决问题,底线是未投生产的模型不会影响业务。 本书介绍了MLOps的关键概念,以帮助数据科学家和应用工程师操作ML模型来驱动真正的业务变化,并随着时间的推移维护和改这些模型。以全球众多MLOps应用课程为基础,9位机器学习专家深探讨了模型生命周期的五个阶段——发、预生产、部署、监控和治理,揭示了如何将强大的MLOps流程贯穿始终。 本书将帮助你: ·通过减少整个ML管道和工作流程中的摩擦,实现数据科学的价值。 ·通过再培训、定期调整和全面改造来完善ML模型,以确保长期准确性。 ·设计MLOps生命周期,使用公正、公平、可解释的模型将组织风险降至*低。 ·为管道的部署和更复杂、标准化程度更低的


1.本书借孙悟空师徒四人取经的经典故事科普人工智能技术和应用,阐述自然语言处理、计算机视觉、音视频处理等人工智能技术和应用,配合丰富的实验内容,通过百度EasyDL平台体验AI技术的奥秘; 2.本书寓教于乐,结合课堂教学和实验,以及家庭亲子实践的方式,学习和体验AI技术的奥妙,适合8~16岁青少年学习AI门的启蒙书; 3.教育界多位知名青少年教育专家评推荐。

1.本书借孙悟空师徒四人取经的经典故事科普人工智能技术和应用,阐述自然语言处理、计算机视觉、音视频处理等人工智能技术和应用,配合丰富的实验内容,通过百度EasyDL平台体验AI技术的奥秘; 2.本书寓教于乐,结合课堂教学和实验,以及家庭亲子实践的方式,学习和体验AI技术的奥妙,适合8~16岁青少年学习AI门的启蒙书; 3.教育界多位知名青少年教育专家评推荐。

适读人群: 人工智能,尤其是机器学习相关领域的研究者; 有相关项目发需求的软件工程师; 高校信息学科或相关交叉学科的教师; 高校计算机、软件、电子、自动化相关专业的三、四年级本科生及研究生; 其他了解一定人工智能基础的学习者和对此感兴趣的爱好者。 (1)作者专注于数据缺失值填补的研究和实践多年,参与大量项目,期刊发表相关论文若干,经验十分丰富。 (2)传统的数据缺失值填补方法是基于统计学的,本书是基于*新的人工智能技术机器学习的,填补该领域空白。 (3)作者创新性地提出了基于神经网络和TS模型的缺失值填补方法,大幅提升填补效率。

本书旨在为读者提供与机器学习有关Python3的基本编程概念。前4章快速介绍了Python 3、NumPy和Pandas。第5章介绍了机器学习的基本概念。第6章主要介绍机器学习分类器,例如逻辑回归、kNN、决策树、随机森林和SVM。第7章介绍了自然语言处理和强化学习。本书还提供了基于Keras的代码示例作为理论讨论的补充。此外还为正则表达式、Keras和TensorFlow 2提供了单独的附录。



DeepMind人手一本! 屡次对战深度学习三巨头,揭秘大脑黑盒到底是神经网络机器,还是加工符号的机器

随着物联网(IoT)技术不断发展并在一系列专业和消费产品应用中变得越来越普遍,工程师们在物联网硬件中设计新一代灵活、低成本、低功耗的嵌式存储器的需求越来越大。本书可以帮助他们满足这种需求。本书由存储器方面国际领先的专家和多项专利持有人共同撰写,使工程师能够快速了解物联网硬件中*的存储器实现方式。

TensorFlow是源机器学习库。本书将教你如何使用TensorFlow行复杂数据计算,让你对数据有更深刻的理解。书中循序渐地讲解了TensorFlow的变量、矩阵和各种数据源等基本概念,深度剖析线性回归、支持向量机、*近邻域、神经网络和自然语言处理等算法,并结合丰富的实例详细讲解情感分析、回归分析、聚类分析、神经网络和深度学习实战等应用。此外,本书还给出了TensorFlow产品级应用的*佳实践和扩展用法,可以帮助你由浅深地掌握机器学习核心思维,构建起立体完备的机器学习概念体系。 通过阅读本书,你将: 熟悉TensorFlow模块中的基本组件 掌握TensorFlow的线性回归技术 学习SVM算法及其实践 使用神经网络优化模型预测 将NLP和情感分析应用到你的数据中 通过实践掌握CNN和RNN 使用梯度提升随机森林算法行预测 学习TensorFlow产品化



ROS工程师经常面临使用机器人操作系统(ROS)基础设施并将物理机器人连到机器人仿真系统的挑战。通过本书,读者将学习如何在虚拟环境中对机器人行仿真并在等效的实际场景中实现所需的行为。 本书首先介绍GoPiGo3及其配备的传感器和执行器。然后,通过从零始创建3D模型并使用Gazebo在ROS中运行仿真来使用GoPiGo3的数字孪生模型。下来展示如何使用GoPiGo3构建和运行一个了解周围环境的自主移动机器人,探索机器人如何学习尚未在代码中编程但通过观察其环境而获得的任务。本书还涵盖诸如深度学习和强化学习之类的主题。 在本书的*后,读者将熟悉在机器人技术中构建专用应用程序的基础知识,并具备从零发高度智能自主机器人的能力。 本书涵盖的主要内容: ?发有环境感知能力的机器人。 ?机器人在物理环境中的反应。 ?将期望的行为分解为一系列机器人行

深度学习这门技术在机器视觉领域大规模应用,采用深度学习的图像识别AI 算法在识别精度上已经超过人眼精度,如今我们日常生活中的扫脸支付也基于深度学习强大的图像特征提取能力。人们觉得AlphaGo 才是AI 时代到来的标志,之所以这样觉得或许是因为人们普遍承认下围棋是一种高级别的智能过程,也是一个绞尽脑汁的过程 可以切身感受到 动脑 。 伊庭教授在本书中强调了研究游戏AI 的意义 或许是解密人类大脑思考方式的方法之一。我个人十分赞同伊庭教授的这一看法,我们的生活、工作 和学习过程中的纠结一直都建立在着眼于眼前还是未来的权衡当中。但正是因为我们具有智慧,所以我们才会具有这种权衡能力(或者说是生活中充满了纠结)。 相信当读者从章坚持读到后一章时,不仅会觉得游戏AI 有趣,还会觉得人脑思维本身就有很多有趣的地方。或许

本书系统介绍对抗样本的基本原理,从相关的背景知识始,包含搭建学习对抗样本的软硬件环境、常用工具,带领读者快速上手实践。本书作者在安全领域有多年实践经验,对业界常见的方法做了系统的归纳总结,包含大量案例,深浅出,实践性强。本书所有示例代码在GitHub上可以下载:https://github.com/duoergun0729/adversarial_examples 主要内容包括: 对抗样本相关的深度学习背景知识,如梯度、优化器、反向传递等。 如何搭建学习对抗样本的软硬件环境。 对抗样本领域的一些常见图像处理技巧。 常见的白盒攻算法与黑盒攻算法。 对抗样本在目标检测领域的应用。 对抗样本的常见加固算法。 常见的对抗样本工具以及如何搭建NIPS对抗样本竞赛环境。 如何站在巨人的肩膀上,快速生成自己的对抗样本,行攻防对抗


★立足企业战略管理系统建设。案例覆盖金融、地产、高科技、医药等30个行业,分享国际公司战略咨询经验,推动中国本土企业战略落地。 ★本书兼备全球经典战略管理思想和中国企业战略管理*实践,简捷高效助力初创企业快速成长。 ★本书提出的战略三环方法论,融合了战略咨询与企业内部战略管理的实战经验,并提供大量真实案例和工具指引,易懂易学。 ★丝路视觉集团董事长李萌迪、金地集团副总裁徐家俊、珠海金控集团副总裁秦军、罗兰贝格前中国区合伙人刘则治、美世(Mercer)前中国区总裁张世东、光辉国际(Korn Ferry)全球高级合伙人张军照、华为公司薪酬管理部部长陈萍联合推荐。


本书主要介绍树莓派不同类型的特性,以及树莓派门所需要的基础知识;涵盖了 树莓派GPIO的不同操作方法,以及树莓派的I2C总线、SPI总线、UART串口、PWM 脉宽调制等偏硬件操作的内容;同时也为读者准备了一些树莓派上常见的服务类型的搭 建和配置,包括树莓派推流服务器搭建的方法,常见数据库MariaDB、PostgreSQL的安 装配置操作,MQTT服务器的搭建配置,DHCP服务器的搭建配置等。此外,还加了 一些比较有趣的实验,例如利用TensorFlow实现对象检测,使用OpenCV制作一个树莓 派扫描仪,或利用OpenCV实现换鼻子的实验,带领读者了解树莓派通过摄像头能够实 现的一些应用。

在过去几年中,自然语言处理技术的受欢迎程度呈现“爆炸式”增长。尽管Google、Facebook、OpenAI等前沿公司继续发布着规模更大的语言模型,但许多发团队仍在摸索着构建与时俱的自然语言处理应用程序。本书将帮助你快速了解自然语言处理的新技术及未来发展趋势。 通过阅读本书,你将学习如何为组织中的实际应用程序构建、训练和部署模型。作者使用强调现代自然语言处理*佳实践的代码和示例来指导你完成整个过程。 本书的主要内容包括: ?使用先的自然语言处理模型(如BERT和GPT-3)来解决命名实体识别、文本分类、语义搜索和阅读理解等自然语言处理任务。 ?发性能可媲美甚至优于箱即用系统的自然语言处理模型。 ?Transformer架构和现代技巧,比如席卷整个自然语言处理世界的迁移学习。 ?自然语言处理的工具和框架,包括spaCy、Hugging Face和fast.ai。 ?使用Python




本书详解Spark 3.0 ML机器学习框架行大数据分析与挖掘的方法,配套示例源码、PPT课件、数据集、发环境、思维导图和答疑服务。

《比较》杂志研究部主管,主要研究方向为产业经济学、数字经济、反垄断和管制经济学。曾在中英文期刊上发表学术论文六十余篇,在报刊杂志上发表文章数百篇。曾获得《金融研究》年度论文奖、优秀论文奖、《经济观察报》专栏奖。著有《区块通识:关于区块的111个问题》。 吕琳媛 电子科技大学教授,主要研究方向为复杂网络信息挖掘领域,包括海量信息导航、挖掘、推荐和预测。国家自然科学基金优秀青年基金获得者、四川省青年人才。阿里巴巴复杂科学研究中心副主任。2018年选《麻省理工科技评论》 35岁以下科技创新35人 。著有《重塑:信息经济的结构》。


1.定位独特。中国共产党成立100周年献礼的主题出版图书,站在民族复兴高度,反映我国信息行业有代表性的高精尖科研成果。 2.作者知名。知名专家撰写,以充分反映信息技术领域的成就和成果。 3.亮突出。内容结构上既反映信息技术领域的发展概况,聚焦有重大影响力的亮;展示重大成果,感受科技之美,讲背后故事,宣扬传承科技精神。 4.创新引领。融合出版,融文、图、音频、视频、动画等于一体,限度地提升读者的阅读体验。

元宇宙 概念为何突然爆火?Facebook、谷歌、微软都在元宇宙中做了什么?元宇宙将为个人生活带来哪些变化?我们如何利用元宇宙发展创新?本书,你所有关于元宇宙的疑问将会一一揭晓。在现实中不可能的事情,在元宇宙时代,是可以想象和实现的,可以用完全不同的视角来探索和解决现在的问题。元宇宙是多重技术叠加的平台,是 虚拟融合技术x数据技术x网络技术x人工智能 的复合体,元宇宙应用将在可以展望的将来扩展到产业的全领域。人们穿戴上可视设备便可登陆元宇宙,实现VR实景看房、线上参与音乐会、云看展云逛博等等。未来,元宇宙将深刻影响到人们的生活方式。

1.用TensorFlow框架针对现实场景设计深度学习系统,实现有趣的深度学习项目。 2.10个真实项目,侧重于实战,涵盖图像处理、推荐系统、股票价格预测和训练聊天机器人、机器翻译系统和基于强化学习的电子游戏等实际应用 3.适合数据科学家、机器学习和深度学习领域的从业者以及人工智能技术的爱好者阅读。

1.贴心为孩子设计,成为他/她的计算机启蒙书。本书由青少年编程机构"核桃编程"核心团队编写,是一本写给青少年看的人工智能科普图书,9岁以上青少年了解人工智能的门读物。 2.写作风格清新有趣,配有幽默精美的插画。用生活中的小事举例,让孩子理解 机器的思考方式 3.用幽默的漫画插图帮孩子仔细理解人工智能的基本算法、原理以及应用场景,一笔带过实现过程和技术细节,不显枯燥,符合青少年的学习习惯。 本书与《写给青少年的人工智能:起源》《写给青少年的人工智能:应用》《写给青少年的人工智能:实践》承前启后,建议搭配哦。

1.PyTorch核心发者教你使用 PyTorch 创建神经网络和深度学习系统的实用指南。 2.详细讲解整个深度学习管道的关键实践,包括 PyTorch张量API、用 Python 加载数据、监控训练以及对结果行可视化。 3. PyTorch核心知识 真实、完整的案例项目,快速提升读者动手能力: a.全面掌握PyTorch 相关的API 的使用方法以及系统掌握深度学习的理论和方法; b.快速从零始构建一个真实示例:肿瘤图像分类器; c.轻松学会使用PyTorch 实现各种神经网络模型来解决具体的深度学习问题; d.章尾附有 练习题 ,巩固提升所学知识;更有配套的代码文件可下载并动手实现。 4. PyTorch 联合创作者Soumith Chintala作序推荐! 5. 书中所有代码都是基于Python 3.6及以上的版本编写的,提供源代码下载。

虚拟化领域系统性教材,涵盖虚拟化历史、通用虚拟化、ARM虚拟化、鲲鹏虚拟化、新一代虚拟化原理和应用实战介绍。加速虚拟化技术落地,助力国产云计算产业发展。

如果你什么也不懂,那就从这本书开始。

本书通过丰富的深度学习实战案例,向读者介绍深度学习可应用和落地的项目,包括手写体识别、数据集分类、情感分类、文本情感分类、编码器、汉字拼音转换、中文文本分类、多标签文本分类、人脸检测、人脸识别、语音汉字转换等。所有案例都基于Python TensorFlow 2.5 Keras技术,可配套用于深度学习的实战训练。

1.内容新颖,重新审视元宇宙生态 理性讲解元宇宙前沿技术、应用场景、商业发展逻辑,为小白的投资、生活等方面进行理性讲解,预防被割韭菜。 2.由浅入深,简单易懂 本书语言通俗易懂,层层递进,凝聚了作者多年研究成果和认知总结,适合对元宇宙感兴趣的小白、区块链从业者阅读。 3.作者资历丰富,众多专业人士推荐 何宝宏、蔡文胜、冯波、神鱼、孔剑平等26位领域专业人士联袂推荐!作者通证一哥专注NFT、DAO、Web3、元宇宙研究,具有丰富的区块链行业经验,曾担任多个区块链项目通证设计顾问和网络营销高管。 4. 洞察热点,自下而上。 从宇宙和人类文明的本源说起,洞察DAO、GameFi、Land等热点,推荐大家一读~

讲述了我国5G产业发展具有的独特优势、5G框架下的智能制造的实现方式、5G赋能智能制造的典型应用场景、挑战及机遇; 联通云、硅谷机器人协会、国际智能制造联盟专家委员会、联合国工业发展组织中加创新中心、海尔集团、三一集团树根互联、中国联通、中国电信研究院、尚品宅配、*、诺基亚等机构的专家提供智力支持; 工业和信息化部原部长李毅中、中国工程院院士邬贺铨和刘韵洁、海尔董事局主-席张瑞敏作序推荐。

1.深浅出,通俗易懂 基于TensorFlow.js讲述如何在浏览器端发人工智能应用,深浅出地介绍了前端发、深度学习的相关知识,帮助读者提升智能前端发水平。 2.实用工具书,针对性强 从环境配置出发,详细介绍了卷积神经网络与移动端常用的几个网络模型。 3.实例丰富,参考性强 提供大量实际案例,具有较高参考价值。 4.适用性强,具有广泛性 适配新版本以及多类型设备,具有广泛参考性。

机器人是当前科技领域发展的重要方向之一,受到科技界和企业界的广泛重视。 特别 是近 5 年来,互联网+、大数据和以深度学习为代表的人工智能技术等推动机器人技术有了 进一步发展,人们预测,机器人或许成为下一代工业革命的引领者。 “机器换人”等现象的不 断涌现,表明机器人将推动现有产业升级换代,甚至产生新业态。

智能音箱播放歌曲这个看似简单的场景背后,是多种人工智能技术的集体协作,包括声学信号处理、语音自动识别、自然语言理解、资源检索与发现、自然语言生成、语音合成等,其中内容检索是满足用户终需求的关键技术之一。 面向音乐数据集的这些特征构建索引,根据特征数据收录的不同可以有不同的技术体系。在自然语言处理中,自然语言理解处于核心地位。如果把音乐看成一种特殊的 语言 ,那么,对音乐的语义理解意味着什么?音乐的那些主要特征能够表达音乐的语义特征吗?人类情感可以量化吗?人工智能可以具备情感吗?情感化的人工智能在产品设计中的竞争力有多强?在本书中,希望你可以找到答案。

学习思路,理论先行:构建了非常系统化的理论知识体系,助力读者透彻理解深度学习的基础知识。 学习原理,思维先行:学习一种新的方法、新的算法时,先从本质上剖析其来源,分析提出这种新方法的思维是什么。 抽丝剥茧、深挖本质:透过其烦杂的表面,深挖其本质。 纵向学习、横向比较:详细讲解深度学习作为语言模型中很有用的一种技巧,如何在很多方法中被借鉴和使用。 实践有章可循,拒绝举轻若重:本书将实践分为原理实践和应用实践。原理实践注重案例与原理的呼应,增强对于原理的理解和认识;代码实践增加不同场景下的实践技能,提高Python实践水平。

比史蒂夫乔布斯、埃隆 马斯克更偏执的 科技狂人 ,现实版 弗兰肯斯坦 ,美国知名生物制药公司联合治疗公司创始人兼CEO玛蒂娜 罗斯布拉特缔造不死未来的世纪争议之作,在元宇宙造你的第二分身,掌握未来世界的数字化生存指南! 超越人类身体的物理界限,实现人类思维和意识的永生不死!《虚拟人》通过思维文件、思维软件、思维克隆人及思维克隆技术等核心概念,向我们展现了一幅元宇宙生活图景! 驭势科技(北京)有限公司联合创始人兼CEO吴甘沙,Ehang亿航创始人兼CEO胡华智,清华大学社会科学学院院长彭凯平、中国当代知名科幻作家、畅销书《三体》作者刘慈欣,中国科学院国家天文台研究员、 第十一届文津奖 获奖图书《星际穿越》译者苟利军,奇大学校长、谷歌工程总监、畅销书《人工智能的未来》作者雷库兹韦尔,人造生命之父、畅销书《生

1.本书从各个环节细致的介绍了如何构建完整的机器学习流水线,以及如何用TensorFlow轻松实现自动化机器学习; 2.本书概述了搭建机器学习流水线所需的组件,介绍了TFX的新特性和组件,且提供了实用的代码示例; 3.本书受到了谷歌TensorFlow发者大使Robert Crowe、帕特森咨询公司CEO Josh Patterson等人联合推荐; 4.本书适合机器学习工程师、算法工程师及数据项目负责人等相关发人员阅读学习,主要可学习到以下内容: ●了解机器学习流水线的构建步骤 ●使用TensorFlow Extended(TFX)构建机器学习流水线 ●使用Beam、Airflow、Kubeflow Pipelines编排流水线 ●数据校验和数据预处理 ●使用TensorFlow的模型分析工具 ●检查模型的公平性 ●使用TensorFlow Serving和TensorFlow Lite部署模型 ●了解差分隐私、联邦学习和加密机器学习等隐私保护方法